2023 4th International Symposium on the Internet of Sounds | 979-8-3503-8254-9/23/$31.00 ©2023 IEEE | DOI: 10.1109/IEEECONF59510.2023.10335232

Just a Sounding Object Notation: Sharing Objects
for Sonic Interaction Design with JSON and OSC

Marco Tiraboschi
Lab. of Music Informatics (LIM)
University of Milan
Milan, Italy
0000-0001-5761-4837

Abstract—We address the challenges encountered in sharing
and communicating complex sounding objects in the field of Sonic
Interaction Design. To overcome these challenges, we propose
the adoption of JSON as a representation syntax and exchange
format, accompanied by the integration of an Open Sound Con-
trol (OSC) server for enhanced interoperability and centralized
control. By leveraging JSON, we provide a standardized method
for capturing and sharing comprehensive information about
sounding objects, streamlining the transition from prototyping
to production software, and enabling efficient communication
between analysis and synthesis tools. The integration of an OSC
server further enhances real-time interoperability with other
software platforms. To demonstrate the efficacy and viability of
JSON and OSC as powerful tools for sharing objects in Sonic
Interaction Design, this paper presents a practical use case that
combines the SAMPLE software for modal analysis with the
Sound Design Toolkit for real-time sound synthesis. Notably,
SAMPLE generates JSON files that align with our proposed
solution, highlighting the seamless compatibility and applicability
of these technologies.

Index Terms—sound synthesis, sounding objects, representa-
tion, exchange, communication protocol, OSC, JSON

I. INTRODUCTION

Sonic interaction designers frequently find themselves nav-
igating through a high-dimensional space, which is character-
ized by the large number of parameters present in the soft-
ware tools they employ. While developing the Sound Design
Toolkit [1], we realized that the very same high dimensionality
that fuels the designer’s creativity also poses a challenge due
to two primary issues.

First, the lack of an established exchange format made it
challenging to transition from complex multimedia program-
ming environments, such as Pure Data [2] or Max [3], to
production software, such as a VST plugin developed in C++
with JUCE or an XR experience created in C# with Unity.
This also slowed down our work as developers, as we had
to recreate example prototypes realized in, for instance, Max
entirely anew for each distinct implementation of our software.
The absence of a shared representation format uncovered
the existing gap between sound analysis software, used for
parameter estimation and fitting, and synthesis software.

Secondly, real-time interoperability with other software was
complicated because it relied on platform-specific utilities. An
effective communication protocol was missing.

Stefano Papetti
Inst. for Computer Music and Sound Technology Lab. of Music Informatics (LIM)
Zurich University of the Arts
Zurich, Switzerland
0000-0002-7490-3574

Federico Avanzini

University of Milan
Milan, Italy
0000-0002-1257-5878

In this paper, we introduce a solution that addresses the
aforementioned issues by adopting JSON as a representation
syntax and an exchange format for the parameters of virtual
sounding objects. Additionally, we implemented an OSC [4]
server to facilitate seamless interoperability and centralized
control. Furthermore, we demonstrate a preliminary example
of interoperability, wherein the SAMPLE [5] software for
modal analysis already generates JSON files that adhere to
the specifications of the Sound Design Toolkit.

II. BACKGROUND
A. The Sound Design Toolkit

The Sound Design Toolkit (SDT) is a GPLv3 licensed
open-source framework, serving as a virtual Foley-box for
ecologically founded sound synthesis and design. Its capabili-
ties encompass simulating diverse acoustic phenomena arising
from solid interactions (e.g., collision, rubbing, rolling, scrap-
ing), liquids (e.g., dripping, streaming water), gasses (e.g.,
explosions, blowing wind), and machines (e.g., combustion en-
gines, electric motors). Comprising physically informed sound
synthesis models, audio processing algorithms, and analysis
routines, the SDT primarily targets research and education
in Sonic Interaction Design while also finding successful
applications in musical contexts.

In particular, the solid resonator models in the SDT are
based on the modal synthesis paradigm [6], which allows to
define the frequency, gain, and decay time of each of their
sinusoidal components. On top of that, the resonators also offer
a physical interpretation in terms of vibrating objects, making
available their vibration displacement and velocity at various
“pickup” points. Such variables are used by the SDT’s solid
interaction models to compute interaction forces related, for
instance, to collision or friction between objects.

Considering the inherent complexity of the sound synthesis
techniques adopted, we made the decision to provide designers
with a dedicated tool to effortlessly parameterize the SDT’s
resonator models through an ad hoc modal analysis tool,
SAMPLE (see Section III-C).

B. JSON

JSON (JavaScript Object Notation) is a widely used data
interchange format known for its simplicity, flexibility, and

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI MILANO. Downloaded on January 07,2025 at 16:23:59 UTC from IEEE Xplore. Restrictions apply.

ease of integration across various platforms and programming
languages. It offers a convenient and efficient way to structure
and transmit data between server and client applications.

JSON is built on two fundamental data structures: objects
and arrays. These structures allow for a versatile representation
of various data types and hierarchies. An object is defined
within curly braces and consists of key-value pairs. Each key
is a string enclosed in double quotation marks, followed by
a colon, and its associated value. These values can encom-
pass various data type, such as strings, numbers, arrays, or
even nested objects. The key-value pairs are comma-separated
within the braces. Arrays are enclosed in square brackets and
can contain an ordered collection of values. The value inside
JSON arrays may also encompass elements of various data
types, including objects and nested arrays.

C. Open Sound Control

Open Sound Control (OSC) [4] is an application-layer
protocol over either TCP or UDP, developed mainly for
communication between computers and multimedia devices,
such as digital musical instruments.

By specification, an OSC client is any application that
sends OSC packets, the units of transmission of OSC. Any
application that receives OSC packets is an OSC server. Every
OSC server has a set of OSC methods: they are the potential
destinations of OSC messages received by the OSC server,
and correspond to the available points of control for the
application. OSC methods are arranged in a tree structure
called OSC address space. In this structure, the OSC methods
represent the leaves, while the branch nodes are referred to as
OSC containers. An OSC address space needs not to be static,
but can vary over time. Every OSC method or container is
identified by a symbolic name in the form of an ASCII string.
The OSC address of an OSC method consists in a symbolic
name that specifies the full path to the OSC method within the
OSC address space. The path starts with the root symbol ‘/’,
and it includes the names of all the containers in pre-order,
ending with the name of the OSC method. These names are
separated by forward slashes. It is noteworthy that the syntax
of OSC addresses conforms to the syntax used in URLs.

III. DESIGN AND IMPLEMENTATION
A. JSON

As a representation format for the SDT, we opted for JSON,
a very common choice across many Web and IoT domains,
such as the Internet of Sounds. In contrast, XML has become
unpopular mostly due to its verbosity [7]. We integrated the
JSON implementation by James McLaughlin [8], [9], which
we also contributed to. This implementation fits perfectly our
requirements due to its low-footprint and ANSI C compliance.

Any object implemented as a C st ruct in the SDT library
is represented as a JSON object. This JSON object includes
the SDT object’s attributes as keys and their corresponding
attribute values as values. For each of these attributes, the
corresponding getter and setter function are called by the
JSON dump and load functions, respectively.

Some of the SDT objects have multiple values for each
attribute, which are represented as JSON arrays. Modal res-
onators, for example, have two attributes that express the size
of other attributes: the number of modes and the number of
pickup points. A SDTResonator structure holds one modal
frequency, one decay time, and one modal weight value for
each resonance mode to be simulated. Consequently, modal
frequencies, decay times and modal weights are represented
as three arrays. Since at each pickup point each mode has its
own gain factor, modal gains are represented as a nested array.
Listing 1 is an example JSON representation of a resonator.

Since users may want to call the load function at audio rate,
every JSON load function has a safety flag. When this is turned
off, all attributes can be set without restrictions. Otherwise,
the JSON loader will avoid setting any attribute that would
result in memory allocation or deallocation; instead, a warning
will be displayed. Among the attributes requiring special care
are the sizes of memory buffers for analysis objects, and the
cardinality of array-valued attributes (e.g. the number of modes
of a resonator). Functions in the SDT allow to serialize and
deserialize JSON from and to either C-strings, to be used on-
the-fly, or files, to be stored and exchanged.

In our context, a group of SDT objects is called a project.
These may be, for instance, the SDT objects loaded in a Pure

{
"nModes": 20,
"nPickups": 1,
"activeModes": 20,
"fragmentSize": 1.0,

1,0, 1,0,

Listing 1: Example of a JSON file with parameters for a modal
resonator estimated from a glass sound using SAMPLE. This
JSON object has four scalar attributes (nModes, nPickups,
activeModes, and fragmentSize), three array-valued
attributes (freqgs, decays, and weights) of size nModes,
and gains is a nested array of nPickups of size nModes.

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI MILANO. Downloaded on January 07,2025 at 16:23:59 UTC from IEEE Xplore. Restrictions apply.

&) impact~-help.pd * - C:/Program Files (x&6)/Purr Data/extra/SDT - [m| >

File Edit View Put Media Windows Help

impact~ - Simulates an impact between two solid cbjects

Impact stiffness Impact dissipation Contact shaps Strike

strike @ -3

r hammerimp
=

inertial hammerimp

Te+87 i TS r objectimp
e = =
stiffness 1 dissipation $1 shape 51 modal cbjectimp 3 1
=
P - -
— roim tart:
| 1 r pd-dsp-started

impact~ ham;erimp-ob;ec-tilrp 3 B _;Oﬁdbaﬂg

Args: 1st obj ID, 2nd obj ID| n. of cutlets

hammerimp mass ©.91;

i 1008 hammerimp fragmentSize 1;
chjectimp fregs 500 1300 1700;
chjectimp decays 1 0.5 0.25;

dac~ objectimp pickup © 100 100 100;

chjectimp sctiveModes 3;
chjectimp fragmentSize 1;
imp contactd O;

imp contactl O;

stiffness 1e+07;
dissipation 1;

shape 1.5;

[Frasonator/load objectimp C-/resonator_jzon

sdt0SC

Fig. 1. Example of the Pure Data help patch for impact~ objects, with the
addition of the sdtOSC object and an OSC message to load the parameters
of a modal resonator from a JSON file.

Data patch, or all the components needed for a VST plugin. A
project is represented as a JSON object which holds one key-
value pair for each SDT object type. The key identifies the
type (e.g. resonators, frictions, bubbles, etc.), and
the value is a JSON object itself. Inside this object, there is one
key-value pair for each SDT object of that type in the project:
the value is the JSON representation of a SDT object, the key
is its identifier. Projects thus provide a convenient way to save
and load the parameters for all the SDT objects of interest in
bulk. For this to be possible, the objects need to be registered
into a hash map. In Pure Data and in Max, we automatically
register in the appropriate hash map all objects instantiated if
their identifier argument is specified.

B. Open Sound Control

We made the decision to incorporate support for the Open
Sound Control (OSC) protocol because of its extensive adop-
tion and its ability to provide the flexibility required for
our purposes. Avoiding unnecessary reinvention of the wheel,
we chose not to include low-level networking functionalities
in the SDT. For communication purposes, several projects
implemented in Pure Data successfully rely on the networking
and OSC libraries by Martin Peach [10] or on the low-level
native objects (netreceive and netsend, oscparse,
and oscformat). On the other hand, Max natively supports
network I/O via UDP, simplifying the process for its users.
Those opting for more traditional text-based programming lan-
guages have the freedom to choose their favorite networking
library among the many available.

We added a new function to the SDT (SDTOSC), that routes
and processes OSC messages. This function is accessible in

both the Pure Data (Fig. 1) and the Max (Fig. 2) distribu-
tion of the SDT as a new object (sdtOSC and sdt.OSC,
respectively). We designed the address space for the OSC
server as follows. The top container is the name of the SDT
object type (e.g. resonator, friction, bubble, etc.).
For each type container there is one setter method for every
attribute. Setter methods take as arguments the identifier of
the object to be affected and the value to be set: for example,
the message /myo/threshold mx 0.001 sets to 0.001
the threshold attribute value of a myoelastic feature extractor
object identified by the key mx. The attribute setters for array-
valued attributes additionally take the index of the element to
be set. All containers also have four methods for JSON input
and output:

e load loads the object’s parameters from a JSON file;

e loads loads the object’s parameters from a JSON string;

e save saves the object’s parameters to a JSON file;

¢ log logs the object’s parameters as a JSON string.

An additional container exists that does not correspond to
any object type: the project container is a specialized one that
enables the simultaneous management of multiple objects. Its
load and loads methods only take, respectively, the file
path and the JSON string to be loaded, while its save and
log methods take as arguments the identifiers of the objects
to be included in the project. The save method also requires
the path of the file to be saved as the first argument.

C. Interoperability Example

Thanks to the addition of JSON and OSC support, the
SAMPLE [11] software for modal analysis has been now
integrated in the SDT ecosystem. This is a software written in

[E] sdt bubble~.maxhelp* - m] X
File Edit View Object Arrange Options Debug Extras Window Help

sdt.bubble~

[liquids] Bubble popping sound.

A single spherical bubble collapsing is simulated as an exponentially decaying
sinusoidal oscillator.

B @ 0

make a bubble!

O

bubble radius (mm) pitch rise factor

/bubble/riseFactor bx 0.15

e

riseFactor $1

L
sdt.bubble~ @key bx @radius 3. @riseFactor 0.2

Fig. 2. Example of the Max help patcher for sdt .bubble~ objects (in
yellow), with the addition of the sdt . 0SC object and an OSC message (both
in blue) to set the “rise factor” parameter.

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI MILANO. Downloaded on January 07,2025 at 16:23:59 UTC from IEEE Xplore. Restrictions apply.

. SAMPLE v AR

Load Audio Seflings Analysis

AeEdP Q=

riginal
synthesis

Analyze Play Original Play Resynthesis ExpartJSON Expart WaAY

Fig. 3. The SAMPLE GUL. In the “Analysis” pane, users can run the algo-
rithm, play an audio resynthesis, and export the estimated modal parameters
as a JSON file for the SDT.

Python that implements the SAMPLE algorithm [12], available
on open-source repositories such as Zenodo, GitHub and on
the Python Package index [5]. SAMPLE can be used either
through its Python API or via a Graphical User Interface
(Fig. 3). The SAMPLE software can be used to analyze
audio samples of modal resonator impulse responses, and
its “JSON export” functionality allows users to save the
estimated modal parameters to file. One example is displayed
in Listing 1: please note that, because of the limitations of the
analysis algorithm, currently the software can only estimate
the parameters for one pickup point.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we tackled the challenges associated with shar-
ing and communicating complex sounding objects in Sonic
Interaction Design, particularly utilizing the Sound Design
Toolkit (SDT). To overcome these challenges, we proposed
the adoption of JSON as a representation syntax and exchange
format, complemented by the integration of an Open Sound
Control (OSC) server for enhanced interoperability and cen-
tralized control. JSON provides a standardized method for cap-
turing and sharing comprehensive information about sound-
ing objects, streamlining the transition from prototyping to
production software, and facilitating efficient communication
between analysis and synthesis tools. Furthermore, JSON’s
human-readable nature [13] allows end-users, including non-
developers, to easily edit it according to their specific require-
ments. The integration of an OSC server further enhances real-
time interoperability with various software platforms. Through
a practical use case, we have demonstrated the efficacy and
viability of JSON and OSC integration by combining the
SAMPLE software for modal analysis with the SDT.

In the future, usability tests could be conducted to evaluate
the impact of the JSON and OSC integration on the sound
design workflow speed. Additionally, considering the flexibil-
ity of the MIDI 2.0 standard, which allows messages with

JSON payload [14], adding support for such protocol could
be explored as an alternative to OSC.

Overall, we are hopeful that the compatibility and applica-
bility of JSON and OSC technologies showcased in this study
pave the way for enhanced sound design processes and broader
possibilities in Sonic Interaction Design.

ACKNOWLEDGMENT

We wish to acknowledge everyone else who was involved
in the development and design of the Sound Design Toolkit
over the years, including Stefano Baldan, Nicola Bernardini,
Gianpaolo Borin, Carlo Drioli, Delphine Devallez, Federico
Fontana, Laura Ottaviani, Pietro Polotti, Matthias Rath, and
Stefania Serafin. In particular, we extend our deepest gratitude
to Davide Rocchesso and Stefano Delle Monache for their
leading contributions to the software and their invaluable
feedback for this paper.

REFERENCES

[1] S. Baldan, S. Delle Monache, and D. Rocchesso, “The Sound Design
Toolkit,” SoftwareX, vol. 6, pp. 255-260, 2017. [Online]. Available:
https://doi.org/10.1016/j.s0ftx.2017.06.003

[2] M. Puckette, “Pure data,” in Proceedings of the 1997 International
Computer Music Conference. Thessaloniki, Greece: Michigan
Publishing, 1997. [Online]. Available: http://quod.lib.umich.edu/i/icmc/
bbp2372.1997

[3] ——, “Combining event and signal processing in the MAX graphical
programming environment,” Computer Music Journal, vol. 15, no. 3, pp.
68-77, 1991. [Online]. Available: http://www.jstor.org/stable/3680767

[4] M. Wright and A. Freed, “Open sound control: A new protocol for
communicating with sound synthesizers,” in Proceedings of the 1997
International Computer Music Conference. Thessaloniki, Greece:
Michigan Publishing, 1997. [Online]. Available: http://quod.lib.umich.
edu/i/icmc/bbp2372.1997

[5] M. Tiraboschi, “SAMPLE — Python package,” LIM, University of Milan,
2021. [Online]. Available: https://doi.org/10.5281/zenodo.6536419

[6] J. M. Adrien, “The missing link: Modal synthesis,” in Represent. Music.
Signals, G. De Poli, A. Piccialli, and C. Roads, Eds. Cambridge, MA:
MIT Press, 1991, pp. 269-297.

[71 L. Turchet et al, “The internet of sounds: Convergent trends,
insights, and future directions,” IEEE Internet of Things Journal,
vol. 10, no. 13, pp. 11264-11292, 2023. [Online]. Available:
https://doi.org/10.1109/J10T.2023.3253602

[8] J. McLaughlin et al. and M. Tiraboschi, “json-parser — Very low
footprint DOM-style JSON parser written in portable ANSI C.”
[Online]. Available: https://github.com/json-parser/json-parser

[9] J. McLaughlin, J. De Witt, M. Meulemans, and M. Tiraboschi,

“json-builder — the serializing counterpart to json-parser.” [Online].

Available: https://github.com/json-parser/json-builder

R. Haefeli, “netpd - a collaborative realtime networked music making

environment written in pure data,” in Linux Audio Conference 2013,

vol. 1. Institute of Electronic Music and Acoustics. University for

Music and Performing Arts Graz, Austria, 2013.

M. Tiraboschi and F. Avanzini, “SAMPLE: a Python package for the

spectral analysis of modal sounds,” in Physical bodies — Proceedings of

the 23rd Colloquium on Music Informatics, 2022, pp. 50-55.

M. Tiraboschi, F. Avanzini, and S. Ntalampiras, “Spectral Analysis for

Modal Parameters Linear Estimate,” in Proceedings of the 17th Sound

and Music Computing Conference, Torino, Italy, 6 2020, pp. 276-283.

[Online]. Available: https://doi.org/10.5281/zenodo.3898795

P. Wehner, C. Piberger, and D. Gohringer, “Using json to manage

communication between services in the internet of things,” in 2074

9th International Symposium on Reconfigurable and Communication-

Centric Systems-on-Chip (ReCoSoC), 2014, pp. 1-4. [Online]. Available:

https://doi.org/10.1109/ReCoS0C.2014.6861361

F. Avanzini, V. Faschi, and L. A. Ludovico, “A web-based midi 2.0

monitor,” in Proceedings of the 20th Sound and Music Computing

Conference, Stockholm, Sweden, 2023, pp. 148-153.

(10]

[11]

[12]

[13]

[14]

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI MILANO. Downloaded on January 07,2025 at 16:23:59 UTC from IEEE Xplore. Restrictions apply.

