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Abstract—The contribution of the external ear to the head-
related transfer function (HRTF) heavily depends on the lis-
tener’s unique anthropometry. In particular, the shape of the
most prominent contours of the pinna defines the frequency
location of the HRTF spectral notches along the elevation of the
sound source. This paper addresses the issue of automatically
estimating the location of pinna edges starting from a set of
pictures produced by a multi-flash imaging device. A basic image
processing algorithm designed to obtain the principal edges
and their distance from the ear canal entrance is described.
The effectiveness of the developed hardware and software is
preliminarily evaluated on a small number of test subjects.

I. MOTIVATION AND RESEARCH BACKGROUND

The soundwaves produced by everyday sound sources are

subject to diverse transformations along their path towards

the listener’s eardrums. One critical transformation is provided

by the listener himself: as a matter of fact, sound waves are

influenced by the active role of the listener’s body, thanks

to which he/she can collect salient information on the spatial

location of the sound source. Auditory cues produced by the

human body include both binaural cues, such as interaural

level and time differences, and monaural cues, such as the

spectral coloration resulting from filtering effects of the exter-

nal ear. All these features are summarized into the so-called

Head-Related Transfer Functions (HRTFs) [1], i.e. the free-

field compensated frequency- and space-dependent acoustic

transfer functions between the sound source and the eardrum.

Binaural spatial sound can be synthesized by convolving an

anechoic sound signal with the corresponding left and right

HRTFs, and presented through a pair of suitably compensated

headphones.

HRTFs are strictly personal. When individual HRTFs are

used, the direction of a simulated sound source is perceived

by the listener almost as precisely as a real sound source

placed in the same direction [2]. Unfortunately, obtaining per-

sonal HRTF data strictly requires specific hardware, anechoic
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spaces, and long collection times [3]. On the other hand,

when non-individual HRTFs are used localization errors such

as front/back reversals, elevation angle misperception, and

inside-the-head localization are commonly experienced [4],

[5]. The reason for such bad behaviour of non-individual

HRTFs mainly resides in the listener’s unique anthropometry,

and especially into the shape of the auricle (or pinna).

The pinna plays a fundamental role in the shaping of

HRTFs. It introduces peaks and notches in the high-frequency

spectrum, whose center frequency, amplitude, and bandwidth

greatly depend on the elevation angle of the sound source.

The relative importance of major peaks and notches in typical

HRTFs in elevation perception has been disputed over the

past years; still, both seem to play an important function in

vertical localization of a sound source. Recently [6], [7] the

authors found that while resonance peaks are similar among

different subjects, frequency notch locations are critically

subject-dependent. In the same works, a simple ray-tracing law

was used to strengthen the hypothesis that in frontal median-

plane HRTFs the frequency of spectral notches, each assumed

to be caused by a single reflection path, is related to the

distance of the most prominent pinna edges to the ear canal

(or meatus) entrance.

Such finding allows for a very attractive approach to the

parametrization of the HRTF based on individual anthro-

pometry, i.e. extrapolating the most relevant parameters that

characterize the HRTF spectral shape from a representation of

the principal pinna edges, which need to be in turn estimated

from a picture. Having outlined this basic yet unexplored

idea, the challenge addressed by this paper resides in the

computational image processing side of our research flow

and may be summed up in the following question: how

to automatically derive a robust representation of the most

prominent pinna edges from one or more side face pictures of

a person?

II. PINNA EDGE EXTRACTION: RESEARCH

It is commonly accepted that no two human beings have

identical pinnae, and that the structure of the pinna does not
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change radically over time [8]. These two simple statements

are at the basis of a recently growing interest in the field

of biometrics in using the pinna as an alternative to face-,

eye- or fingerprint-based subject recognition. A multitude of

works addressing ear biometrics has surfaced in the last 15
years starting from Burge and Burger’s rediscovery [9] of the

work of Iannarelli [8], the pioneer of ear recognition systems.

These new works generally address the study and design of all

the building blocks making up a complete recognition system,

including ear localization in images or video, feature extraction

and matching. A comprehensive review of the state-of-the-art

in ear biometrics up to 2010 can be found in [10].

Radically different approaches to the definition of a feature

model that uniquely and robustly defines the pinna morphol-

ogy from 2D or 3D [11] images in ear recognition systems

have been proposed. Some of these directly transport the input

ear image to a different domain, e.g. using a 3D elliptic Fourier

transform [12] that compactly represents the pinna shape or a

force field transformation [13] that treats pixels as an array of

mutually attracting particles acting as the source of a Gaussian

force field. Others extract an edge map from the original image

containing the pinna; thanks to such map either the pinna is

localized into the image or distinctive features are extracted.

Since we are interested in the extraction of pinna contours

from 2D images, we now give a brief review of these latter

approaches.

The most obvious way of extracting edges from a generic

image implies the use of standard intensity edge detection

techniques such as the Canny method [14]. This method was

exploited by Burge and Burger [9] to obtain a Voronoi diagram

of the pinna edges, from which an adjacency graph was built

for matching. Ansari and Gupta [15] also used the Canny

method as the starting point towards extraction of the outer

pinna edge for localization of the ear in side face pictures.

However, in neither of the two works the effectiveness of the

Canny method in the extraction of all pinna edges was made

clear.

An analogous approach was adopted by Moreno et al. [16].

In order to obtain a profile of an ear picture, Sobel filters

were applied both in the horizontal and vertical directions of

a grayscale image. Then the most marked intensity disconti-

nuities were derived from each resulting image by standard

thresholding, and the sum of the thresholded images gave

the profile. This was used either to automatically extract a

biometric vector of feature points of the pinna or to compute

a morphology vector capturing its shape; these vectors were

the input for a perceptron performing classification. Thanks to

such heuristic procedure, 90% of feature points were reported

to be correctly found.

An alternative to the Canny and Sobel methods was pro-

posed by Choraś [17]. Edge detection in a grayscale image

of the pinna was performed through a pixelwise method

which examined illumination changes within each 3× 3 pixel

window. Based on the minimum and maximum values of pixel

intensities in such window and on an adaptive threshold value,

the center pixel was either labeled as edge or background.

Fig. 1. Canny method (σ = 2, tl = 0.2, th = 0.5) applied to four different
pictures of the same pinna taken with different light sources.

Feature extraction from the edge map was then fulfilled by

tracing concentric circles around the edge map’s centroid and

computing the intersections between circles and edges. Still,

no quantitative results were given for the accuracy of both the

edge map computation and the final classification.

Jeges and Máté [18] endorsed a very similar method, where

the obtained edge map was used in conjunction with an

orientation index image to detect the position of the ear in a

video frame sequence and adapt a deformable template model

(active contour method) to the ear itself. Similarly, in a very

recent work Gonzalez et al. [19] used adaptation of an active

contour model and ovoid fitting to localize the ear in side

face pictures and estimate features under the form of distances

between the outer and inner pinna edges and the inner edge

centroid. No detail on how these edges were extracted is

provided.

Jeges’ edge extraction algorithm was also a critical compo-

nent of the reconstruction method by Dellepiane et al. [20]

which interactively adapted a 3D head model to a specific

user starting from a set of pictures of the head and pinna.

Following a complementary approach to our anthropometry-

based HRTF customization techniques, the resulting model

was fed to a simplified boundary element method solver in

order to simulate custom HRTFs for that user. Regrettably,

few data supported the accuracy of this method for HRTF

simulation.

III. A MULTI-FLASH CAMERA-BASED APPROACH TO

PINNA EDGE EXTRACTION

Even though edge detection through intensity-based meth-

ods seems to be a valid choice in the extraction of pinna

edges from 2D images, it is not the sole nor the most efficient

option. We initially tried to process pictures with the Canny

method, yet it turned out that it fails in low-contrast areas

such as the pinna, and especially in cases where shadows

are not projected below the considered edge. Fig. 1 shows an

example of Canny edge extraction (with standard deviation of

the Gaussian filter σ = 2, lower hysteresis threshold tl = 0.2,
and upper hysteresis threshold th = 0.5) on four pictures of the
same pinna taken with different light sources. It can be easily

noticed that while in some cases the extraction is acceptable

(rightmost image), in all other cases either some important

depth edges are lost or some minor depth edges or specular

highlights are extracted.

A more robust depth edge extraction can instead be achieved
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Fig. 2. The multi-flash device: full prototype and electronic parts.

through a technique known as multi-flash imaging [21]. The

central concept to multi-flash imaging, which was born as

a technical solution to non-photorealistic image rendering,

is the exploitation of a camera with N flashes strategically

positioned around the lens to cast shadows along depth

discontinuities in the scene. For each of the N flashes a

picture is taken; the location of the shadows abutting depth

discontinuities, appearing only for a strict subset of the N
pictures, represents a robust cue to create a depth edge map.

Thus, thanks to this simple and computationally efficient

method, one can robustly distinguish depth edges from texture

edges due to reflectance changes or material discontinuities.

To the best of the authors’ knowledge, the method has never

been systematically applied to pinna edge detection before.

Since the pinna has a uniform texture, the main purpose of

multi-flash imaging would reduce to the extraction of the most

marked depth discontinuities, that usually correspond to the

outer helix border, inner helix border, concha wall/antitragus

border, and tragus border (see Section III-C for definitions

of these anatomical components). We now describe the hard-

ware and software components that implement our multi-flash

camera-based pinna edge extractor.

A. The Multi-Flash Camera Prototype

A multi-flash camera prototype was custom built by the

authors. The main electronic components building up the

device, pictured in Fig. 2, are:

• a battery-powered Arduino UNO microcontroller board;

• an Arduino data logging shield;

• a TTL serial JPEG camera;

• four Super Bright White LEDs;

• a common SD card.

The data logging shield manages data transmission from the

camera to the SD card. The four LEDs, which represent

the four flashes of our multi-flash camera, are symmetrically

positioned around the camera lens along a 17mm-radius

circumference and can be turned on independently by the

microcontroller. As we will later see, their positions with

respect to the pictured scene, i.e. in the up, down, left, and right

directions, allow simplification of the post-processing phase.

Since the light emitted by each LED has a high directional

component that clearly appears in pictures, the application of

a punched and reversed paper glass bottom right above the

LEDs allows projection of a more diffuse light field.

Fig. 3. Subject during acquisition of pinna images.

The electronic components are secured to a rigid board

by four long pins and enclosed in a hemi-cylindrical PVC

foil, whose shape affords correct orientation as referred to the

pinna. The height of the half-cylinder (15 cm) was chosen

so as to entirely fit a big-sized pinna (8 cm height) in the

pictured frame. Furthermore, the fixed distance between the

lens and the pinna allows to maintain consistency among

the dimensions of different pinnae. Lastly, because a dark

environment is desirable to better project shadows, the open

side of the hemi-cylinder is closed by a square of dark cloth

with Velcro fastening strips before data acquisition.

Acquisition of the required data is managed as follows. By

connecting the battery to the Arduino board, an Arduino sketch

performing the following operations is run:

while no motion detected do

wait; {wait for motion detection}
end while

delay 10 s;

for k = 1 to 4 do

led_k ← turn on;

take picture;

led_k ← turn off;

img_k.jpg ← picture; {save to SD card}
end for

When the cap is removed from the lens, motion detection is

triggered. During the following 10s pause, the subject presses

the open top side of the device around his/her left or right ear

trying to avoid hair occlusion and aligning the hemi-cylinder

with the pinna (see Fig. 3). Afterwards, four pictures −
each synchronized with a different flash light − are acquired.

Because of the required storage time of our current prototype

this basic procedure takes approximately 30 seconds, during

which the subject tries to hold the device as still as possible

with respect to the pinna. The four pictures, stored in the SD

card as 320×240 pixel JPEG files, are then passed to a PC

for processing.

B. Depth Edge Map Computation

After having associated each picture to the position of the

corresponding flash light (i1 = left, i2 = right, i3 = up, i4 =
down) depending on whether the left or right pinna has been

acquired, the picture set is fed to a MATLAB processing script.

The procedure it implements is divided into a pre-processing
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phase and an automatic depth map computation phase, whose

core is the algorithm described in [21].

The pre-processing phase consists of the following steps:

1) grayscale conversion: the four images are converted to

grayscale;

2) intensity normalization: the four grayscale images are

normalized with respect to their mean intensity;

3) motion correction: images are first rotated and then

translated for the best possible relative alignment ac-

cording to a standard 2-D correlation function;

4) low-pass filtering: each motion-corrected image is

median-filtered using a 7-by-7 neighbourhood.

Motion correction is critical in those cases where the subject

moved during image acquisition. The best rotation is first

calculated by rotating each image ik, k = 2, 3, 4 in 1◦ incre-

ments, cropping the rotated image to fit the original image size,

and finding the rotation of ik that maximizes the correlation

coefficient with respect to i1. The best translation is instead

calculated by considering each possible (320−wc)×(240−wc)
pixel window of ik, where wc is an even positive user-defined

parameter that we typically set to wc = 20, and finding the

window that maximizes the correlation coefficient with respect

to the centrally (320−wc)×(240−wc) pixel cropped section

of i1. Finally, low-pass filtering was introduced a posteriori to

remove the inherent noise introduced by hair in depth maps.

Shadows are now detected by taking a ratio rk of each image

with the pixelwise maximum of all images. Sharp transitions

in rk along the epipolar ray, i.e. the ray connecting the light

epipole (defined as the position of the flash light with respect

to the taken picture) to the shadowed area, are then marked

as depth edges. In our case, since the four flash lights are in

the plane parallel to the image plane that contains the camera

lens, each light epipole is at infinity and the corresponding

epipolar rays are parallel and aligned with the pixel grid. This

reduces our problem to the detection of sharp transitions along

the horizontal and vertical directions of the ratio images, that

can be managed by standard Sobel filters.

More in detail, the depth edge map is calculated as follows:

• for all pixels x, create imax(x) = maxk(ik(x)), k =
1, . . . , 4;

• for each k, create ratio image rk(x) = ik(x)/imax(x);
• calculate ek, k = 1, . . . , 4 by applying a horizontal Sobel

filter to r1 and r2 and a vertical Sobel filter to r3 and r4;
• keep only the negative transitions in e1 and e3 and the

positive transitions in e2 and e4;
• extract the main depth edges from ek, k = 1, . . . , 4

through a Canny-like hysteresis thresholding, with upper

threshold th defined by the user and lower threshold

tl = 0.4th;
• combine all the edges into a single depth edge map.

The final depth edge map is a (320−wc)×(240−wc) binary
matrix whose black pixels represent the most prominent depth

discontinuities of the pictured scene. As we will later see,

the choice of th has a non-negligible impact on the extracted

edges and on the final results. Fig. 4 reports an example of

Fig. 4. Depth edge maps of two subjects. The outer helix/lobule (a/b), inner
helix (c), concha wall/antitragus (d/e), and tragus (f) borders are highlighted
in blue, red, green, and yellow respectively.

depth edge map extraction for two subjects with parameters

th = 0.35 and wc = 20.

C. The Pinna Edge Extraction Algorithm

The depth edge map of the subject’s pinna allows extraction

of the relevant features that characterize an individual acoustic

response. The information contained in the depth edge map

that reflects such characterization is included in the Euclidean

distance from the points that form the outer helix, inner helix,

and concha wall/antitragus borders to a point approximately

situated at the meatus entrance, that we conventionally assume

to be located in the upper segment of the tragus border

(definitions of all borders are given in Fig. 4).

In order to compute distance values, a second MATLAB

script that sequentially executes the following steps is run:

1) map refinement: the connected components containing

less than 100 pixels, i.e. the smallest blobs that usually

correspond to spurious hair edges, are deleted;

2) tragus detection: the tragus edge is heuristically iden-

tified as the connected component lying in the central

200 × 150 pixel section of the depth edge map whose

distance to the bottom left corner (left pinna) or bottom

right corner (right pinna) of the map is the least;

3) meatus point: the tragus component is subtracted pixel-

wise to its convex hull and the northwestern/northeastern

(left/right pinna) pixel is labeled as the meatus entrance

point;

4) radial sweep: for each elevation angle φ ∈ [−90◦, 90◦]
in 1◦ steps, all the transitions to a depth edge along

the ray originating from the meatus point and heading

towards the pinna edges with −φ inclination are stored

as distances (in pixels);

5) edge tracking: a partial tracking algorithm [22], orig-

inally used in audio signal processing to temporally

group sinusoidal partials, is exploited to group distances

(i.e. edges) along consecutive frames into spatial tracks,

where each frame corresponds to an elevation angle;1

6) pinna edge detection: the two longest tracks in increas-

ing order of distance value as identified by the edge

tracking algorithm, that we call d1 and d3, correspond
to the concha wall and outer helix border respectively,

1The maximum difference between two distances to allow grouping along
consecutive frames is set to 5 pixels, while the maximum number of frames
before a track being declared dead is set to 10.
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Fig. 5. Edge extraction of the authors’ right pinna images.

Fig. 6. Edge extraction of right pinna images of four test subjects.

and the longest track falling between these two tracks is

called d2 and corresponds to the inner helix border.

Fig. 5 depicts the results of the edge extraction algorithm

as track points superimposed to the refined pinna depth edge

maps of the four authors of this paper. This is achieved by

simply projecting each point at distance di(φ), i = 1, 2, 3
from the yellow meatus point at −φ inclination.

IV. RESULTS AND DISCUSSION

The multi-flash-based approach to pinna edge extraction was

tested on a small number of subjects. Right pinna images of 30
volunteers (aged 18 to 60, 12 female and 18 male, caucasian)

were acquired with the multi-flash device and then processed.

Parameter wc was set to 20 for all subjects except for 5 of

them who required a more substantial motion correction (in

these cases, wc = 40). Parameter th was set from 0.1 to

0.7 in 0.01 steps in order to look for the range where edge

extraction visually outputs the best results. Table I reports this

information along with the number of correctly extracted edge

tracks for each subject. This means that in the reported th
range,

• the meatus point is correctly placed in correspondence

with the tragus edge and always falls in the same point;

• the three tracks follow the corresponding depth edge in

its entirety.

If no th value satisfies the latter condition, the reported th
range refers to two correctly extracted tracks out of three.

One can immediately notice that ranges for th are signifi-

cantly different from subject to subject. The variability among

pinna shapes is a first obvious cause of this finding: as an

example, subject 17 has a helix that folds into itself almost

coming into contact with the antihelix, thus failing to project a

consistent shadow. This results into a very shallow depth edge

that is not recognized in the reported th range. Outside this

TABLE I
PINNA EDGE EXTRACTION: RESULTS.

subject th range # tracks bad tracks
01 0.29 − 0.33 3

02 0.43 − 0.47 3

03 0.43 − 0.56 3

04 0.37 − 0.58 3

05 0.23 − 0.34 3

06 0.21 − 0.43 3

07 0.27 − 0.60 3

08 0.24 − 0.40 2 d3 missing
09 0.27 − 0.49 2 d1 interrupted
10 0.23 − 0.31 3

11 0.27 − 0.38 3

12 0.25 − 0.51 3

13 0.25 − 0.32 3

14 0.28 − 0.33 3

15 0.40 − 0.60 3

16 0.29 − 0.40 3

17 0.28 − 0.39 2 d2 missing
18 0.28 − 0.46 2 d1 interrupted
19 0.37 − 0.43 3

20 0.22 − 0.45 3

21 0.24 − 0.50 3

22 0.38 − 0.41 3

23 0.33 − 0.40 2 d3 missing
24 0.19 − 0.38 3

25 0.36 − 0.44 3

26 0.45 − 0.55 2 d2 missing
27 0.20 − 0.57 3

28 0.30 − 0.48 3

29 0.31 − 0.40 3

30 0.27 − 0.32 3

range, either the number of edges is too high to discriminate

the real depth edges from any artifact (low th) or some relevant

depth edges are lost or broken (high th). Another factor that
contributes to the determination of the lower th bound is the

possible connection between the tragus and concha edges, that

does not allow correct detection of the meatus point.

Two more examples of how pinna morphology affects the

final results are subjects 09 (see Fig. 6) and 18, whose

concha wall is not fully extracted. This is due to the shape

of the concha itself, resulting in two or more separate and

nonintersecting edges (as in the pinna of Fig. 1). Since the

grouping conditions of the edge tracking algorithm are not

satisfied, no interpolation between these edges is performed

and only partial extraction of the concha edge occurs.

Motion correction also plays an important role in the

determination of the th range. As a matter of fact, linear

correction often does not perfectly align the four pinna images.

This causes the same edge to be considered twice or thrice

in the final depth map in slightly different yet overlapping

positions, resulting in thicker depth edges. At the same time,

a non-perfect alignment allows extraction of the outer helix

border when the back of the ear is surrounded by hair, as

shadows on hair are only rarely detected by the multi-flash

setup. The second pinna in Fig. 6 shows a case (subject 08)
into which a very good alignment is reached yet part of the

outer helix border fails to be extracted.
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However, if we consider a th value included in the reported

range for each subject, the meatus point is correctly identified

for all subjects, and 84 out of 90 edge tracks are correctly

extracted (success rate: 93.3%). Statistically, the th value that

guarantees a correct extraction of the edge tracks for the

highest number of subjects is th = 0.31. These findings are

conditioned by the fixed relation tl/th = 0.4, hence further

work is needed to check whether a different lower/upper

threshold ratio improves the above success rate.
The described edge extraction procedure also seems to be

robust in those cases where earrings, glasses or other objects

appear in pictures (e.g. subject 07 in Fig. 6). Even small

amounts of hair occlusion causing the detection of depth edges

due to hair (e.g. subject 25 in Fig. 6) do not corrupt the

extracted tracks.
The above results refer to a preliminary study. An extensive

analysis on a wide variety of subjects with different pinna

sizes, shapes, and albedo values is required to robustly assess

the effectiveness of the edge extraction procedure and to study

how the th parameter can be automatically defined prior to

the image post-processing routine. Nevertheless, a more robust

motion correction is required before: possible solutions to this

issue, whose feasibility still has to be investigated, include

• the exploitation of more complex feature-based image

alignment (image registration) algorithms;

• fast shooting of pictures, in order to reduce the duration

of the acquisition routine down to a few seconds and

make motion correction become much less critical;

• single-shot multi-flash photography [21], [23], a little

explored idea according to which four different flash

colours can be used to take a single picture of the scene

so that the Bayer filter of the camera should be able to

decode the separate light wavelenghts and thus derive

four different pictures each related to a single flash.

Other improvements need to be introduced to the multi-

flash edge extractor, especially at hardware level. For instance,

the four flashes can be placed farther from the lens in order

to project broader shadows and thus improve the depth edge

extraction. A similar result can be achieved by a configuration

with more flash lights, e.g. 8. Other working ideas include the

improvement of the outer shell of the device and the use of

thermogram imagery to robustly detect the meatus location as

well as to remove partially occluding hair [9]. Furthermore,

at software level, a combination of depth and intensity edge

detection techniques will greatly improve extraction of the

outer helix border.
The proposed technology was designed so as to be applied

to automatic measurements of pinna anthropometry for bin-

aural audio rendering, and represents a low-cost alternative

to technologies involving 3D image acquisition (e.g. laser

scanners). Nevertheless, ear biometrics represents a natural

applicative area for the multi-flash edge extractor, as the

feature vectors (distance tracks) it produces share analogies

with respect to those used in recent systems, especially [19].

A deeper study of the applicability of this technology to a

complete biometric system will disclose its real potential.
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