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ABSTRACT

As partof theSObEuropeanprojectseveralcartoonmodelsof contactsoundsof solid bodies,“hitting”, “bouncing”, “dropping”, “break-
ing”, “rolling”, have beendevelopedandimplementedasmodules(andsub-patches)for freereal-timesoundsoftwarepd 1. Themodels
areaccessedthroughperceptuallymeaningfulparametersandrunwith low computationalloadon standardPChardware.

Theunderlyingideaof cartoonification, itsmotivationandbackgroundin psychoacousticresearcharesketchedfirst. Themaincommon
sound-coreof mostmodels,a physics-basedalgorithmof impact-interactionwith interactingresonatorsin modaldescription,is shortly
presented.Theimpactmoduleis embeddedin patchesof higher-level controlto modelmorecomplex contactscenarios.Thestructure,use
andpotentialof theresultingsoundobjectsis described.

While the resultsarea possiblebasisfor reactive sonicinterfacesin Human-Computer-Interaction,they canaswell beexploited for
musicalpurposes.

1. CATALOG
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Figure1: Overview of real-timesoundmodelsof contactscenariosandtheir underlyingstructures,asdevelopedduringthecourseof the
SObproject. Thegraphicallayout in nested(circular)fields reflectsthestructuralhierarchy:Physics-andgeometrically-basedlow-level
audioalgorithmsin the center, completedwith surroundinghigher-level objects,resultingsoundmodelsin the largestcircle andfinally
moreconcreteandcomplex example-scenarios,thatmayalsoenvolve gesturalcontrol.Arrows indicatedependenciesandareto bereadas
“contributes”/“usedto realize”.

1http://iem.kug.ac.at/pd/

CIM-1



Proceedingsof theXIV Colloquiumon MusicalInformatics(XIV CIM 2003),Firenze, Italy, May 8-9-10,2003

2. INTRODUCTION

In 1969,Rissetpublisheda ground-breakingcatalogof computer-
synthesizedsounds[1], which served the purposeof illustrating
the emerging techniquesof soundanalysisandsynthesis.Those
examplesandstudiesarestill influential for composersandsound
scientists,especiallythoseworking with signal-processingtools
andin thecontext of musicalsounds.Thedisciplineof psychoa-
cousticshasprovided, over the years,a solid supportto connect
signalprocessingto humanperception.

A new streamof studiesstartedin theearlyeightiesfrom the
observation that everydaylistening is different from musicallis-
tening[2]. Bothnew psychoacousticandsoundmodelingmethods
andresultsareneededfor this new framework. On theperceptual
side,theviewpointof ecologicalpsychologyis veryuseful[3]. On
themodelingside,thephysically-basedmodelingparadigmseems
to be the bestsoundproductionstrategy to addresseverydaylis-
teningin interactive applications.

The EU-fundedproject “the SoundingObject” (SOb) 2 was
launchedin 2001to provide a corpusof knowledgein everyday
soundperception,accompaniedby suitablenew methodsandtools
for physics-basedsoundmodelingand for high-level control of
thesemodels.

The SObprojectaimsat “soundingobjects”that incorporate
a (possibly)complex responsive acousticbehavior, expressive in
thesenseof ecologicalhearing,ratherthanthe(re-)productionof
fixed isolatedsignals. Although “real” soundsherebyserve as
an orientation,realistic simulationis not necessarilythe perfect
goal: simplificationswhich preserve andpossiblyexaggeratecer-
tain acousticaspects,while losing othersconsideredlessimpor-
tant,areoftenpreferred.Besidesbeingmoreeffective in convey-
ing certaininformation,such“cartoonifications” areoftencheaper
to implement,just like graphicaliconsareboth, more clearand
easierto draw thanphoto-realisticpictures.

Physicalmodelingnaturallyrelatesto synthesiscontrolledin
termsof ecologicalparameters.Thestraightapproachthough,the
descriptionof a given physicalsystemthroughdifferentialequa-
tionsandtheirnumericalsolution,oftenleadsto (possiblyhighly)
realisticsimulationsthat arecomputationallyexpensive andlack
flexibility andgenerality. We thuscombinecloselyphysics-based
modelsin the above sensewith structuresthat remindof classi-
cal techniquesof soundsynthesis,trying to integrateecological
expressivity, flexibility andcomputationalefficiency.

Contactsof solid bodiesform a largeclassof sound-emittingpro-
cessesin every-daysurroundings.The perceptionof ecological
attributes,like materialandsizeof involvedobjectsandtheir way
of interaction,hitting, sliding, rolling. . . , from contactsoundsis
commonexperienceand has beenexaminedby psychoacoustic
studies.Our worksshow that,from thestandpointof cartoonifica-
tion, many typical formsof contact-interactioncanbesuccessfully
modeledon the basisof a physically foundedbut “abstracted”,
flexibleandefficientone-dimensionalimpactor friction algorithm.
Specificcharacteristicsof themacroscopicscenarioswhich areof
high perceptualrelevancearemodeledexplicitly, for instanceas
macro-temporaldistributionsof micro-impacts.

Thispaperis intendedto bea explanatoryguideto ourcollec-
tion of soundmodelsandexamples,asthey areavailablenowadays

2http://www.soundobject.org

from theSObprojectwebsiteaspd pluginsandpatches.Detailed
explanationsof theinnerstructureandthedevelopmentof all mod-
elscanbefoundin [4]. All contactsoundmodelsarebasedonlow-
level modelsof basicinteractions:impactsandfrictions,whichare
describedin sections3.1and3.2. Higher-level modelsdescribing
phenomenawith complex temporalpatternsarepresentedin sec-
tion 4. Finally, section5 briefly givessomeexamplesof how the
soundmodelscanbeassociatedto everydayobjects,thusprovid-
ing their typicalsonicbehavior in aninteractive,real-timefashion.

3. THE LOW-LEVEL PHYSICS-BASED MODELS

3.1. Impact

In contrastto severalstudiesof contactsoundsof solidbodiesthat
focuson theresonancebehavior of interactingobjectsandwidely
ignore the transientstateof the event, our approachis basedon
a physicaldescriptionof impact interactionprocesses[5]. This
physicalmodelinvolvesa degreeof simplificationandabstraction
thatimpliesefficientimplementationaswell asadaptionto abroad
rangeof impactevents.

We considertwo resonatingobjectsandassumethat their in-
teractiondependson thedifference� of two (1-dimensional)vari-
ablesconnectedto eachobject. In thestandardcaseof examined
movementsin onespatialdirection, � is the distancevariablein
that direction(negative distance

�
contact). Possiblesimultane-

ousinteractionalongotherdimensionsareexcludedat this stage.
This leadsto a compactefficient algorithmthat strikes the main
interactionproperties.Theimpactforce � is statedasa nonlinear
termin � (and �� ):
��� � ���	��
��� ���	�	��
 ��� ��� � ���	�	����������� � �����	������������ �����	��
 � ��!! 
 � "�!

(1)
Here,

�
is theelasticityconstant,i.e. thehardnessof theimpact. # ,

theexponentof thenon-linearterms,shapesthedynamicbehavior
of the interaction(i.e. the influenceof initial velocity), while �
controlsthe dissipationof energy during contact,accountingfor
friction loss. One inlet of the impact ...3 modulestakes a
list of interactor-parameterscontainingthe aforementioned
values(in thesameorder).

Alternative versions,“linpact ...” exist with a simpler,
linear, forceterm,

��� � ���	��
$�� ���	�	�%
 � � � � ��������&'�� ������
 � ��!! 
 � "�! (2)

(and accordinglyonly two interactor-parameters
�

and & ),
thattraderichnessin detailfor reducedcomputationalcost.

Thetwo interacting,resonatingobjectsarebuilt underthepre-
misesof modalsynthesis[6] 4. This formulationsupportsparticu-
larly well ourmaindesignapproachfor its physicalgeneralityand,
at the sametime, for its intuitive acousticmeaning. Oneres-
onator is herecharacterizedby thenumberof its modes(which

3The differencebetweenimpact modalb andimpact 2modalb
is explainedlaterin thesection.

4In fact, pluginsare realizedin a modularstructure,that enablesthe
connectionof numerousdifferentresonators as well asinterac-
tors. Digital waveguideresonatorsarein preparation;linearizedimpact
and friction are the additionalexisting interactors. All modulesso
far sharethemodalresonator-functions.
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canbechosenfreelyasanargumentgivenatmodule-creation)and
for eachmodethethreemodalparameters:mode-frequency, expo-
nentialdecay-timeandlevel (“weight”) of themodeat thepointof
interaction. Accordingly theimpact /linpact ... modules
haveinputsfor lists(of length“numberof modes”)of frequencies,
decay-timesandweighting-factors. It is oftensatisfactory
and more convenient to use the modulesimpact modal and
linpact modal, where(in contrastto impact 2modal and
linpact 2modal) the first resonator is reducedto an in-
ertial (point-)mass5 andcharacterizedonly by one(“mass”-)para-
meter. This practicaland computationalsimplification parallels
thenotionthatin many practicalcontactscenariosthevibrationof
oneinvolvedobjectis hardlyor not perceived.

Further, for eachresonator, an arbitrarynumberof “pick-
ups” can be defined,which are characterizedby lists, given at
one inlet, of weighting-factors (for all modes). The first
pickup is identicalwith theinteraction-point(andalwaysexists).

Finally, all moduleshave threeaudio inlets, for the input of
signalsrepresentingexternal forceson both resonators(againat
the point of interaction)andan additionaloffset, usedmainly
for surfaceprofilesin rolling-/sliding-models.

3.2. Friction

For friction modeling,we usea computationalstructurevery sim-
ilar to theoneusedfor impacts.Thepd plugin is calledfric-
tion 2modalb.

The underlying model describesthe averagebehavior of a
multitudeof micro-contactsmadeby hypotheticalbristlesextend-
ing from eachof two sliding surfaces.Whena modaldecomposi-
tion is adoptedfor bothinteractingobjects,theequationsare())))))))))* ))))))))))+

,.-�/10�2-�/ �3& -�/ ��2-�/ � � -�/4�2-�/ 
5� -�- �6�879
 �4:;
=<?>@>A>�B - �,.CEDF0�2CGD �3& CGD ��FCED � � CGD1�2CGD 
5� CH- �I�879
 �KJ�
L<�>1>A>�B C �M 
5N5O�P/RQ;S �� -�/ �TNUOWVD�Q%S �� CGD 
 (relativevelocity)�X 
5� OZY � M 
 X �?
 M\[ <]�T#Z� X 
 M � XX_^�^ � M �a` 
�87b
dcFe X �3c S �X �3c$f M 
 (friction force)

(3)
where the � variables representthe modal displacements,

while X is themeanbristledisplacement.The terms � -�- and � C�- ,
asindicatedby g in thesecondsubscript,representexternalforces.
As farastheform of functions# and X ^�^ is concerned,weadopta
coupleof previously proposedfunctions[7].

High-level interactionsbetweentheuserandtheaudioobjects
rely mainly uponthreeinteractionparameters.Thesearethe ex-
ternalforces � -�- and � C�- (seeequations(3)) actingon eachof the
two objects,which aretangentialto thesliding direction,andthe
normalforce � O betweenthetwo objects.Theremainingparam-
etersbelongto a lower level control layer, asthey arelesslikely
to betouchedby theuserandhave to betunedat thesounddesign
level.

Suchlow-level parameterscanbe groupedinto two subsets,
dependingon whetherthey arerelatedto the resonators’internal
propertiesor to theinteractionmechanism.Eachmodeof thetwo
resonatingobjectsis tunedaccordingto its centerfrequency and

5This is the specialcaseof a modalresonatorwith only oneresonant
modeof frequency h andinfinite decaytime (undamped).

Figure2: Temporalmovementof aninertialmass(above) “bounc-
ing” ona two-moderesonator(atpickup-point, below).

decaytime. Additionally, amodalgain(whichis inverselypropor-
tional to themodalmass)canbesetfor eachresonatormode,and
controlsthe extent to which the modecanbe excited during the
interaction.

A secondsubsetof low-level parametersrelatesto theinterac-
tion forcespecification.Thetriple �4c e 
	c S 
	c f � (seeequations(3))
definethebristlestiffness,thebristle internaldissipation,andthe
viscousfriction, and thereforeaffects the characteristicsof sig-
nal transientsas well as the easein establishingstick-slip mo-
tion. A triple of parametersis usedto setthe shapeof the curveX ^�^ . Specifically, theCoulombforceandthestictionforcearere-
lated to the normalforce throughthe equations� ^ 
ji ^ � O and�1kb
liWma� O , where i ^ and iWm arethestaticanddynamicfriction
coefficients. Finally, the breakaway displacementX8npo is also in-
fluencedby thenormalforce. In orderfor thefunction #'� M 
 X � to
bewell defined,the inequality X_npo �=X ^�^ � M �Gq M musthold. Sincertsvuxw%X ^�^ � M �?
y�1k1z_c2e , a suitablemappingbetween� O and X_npo isX_nGo 
|{@�_k@z8c2e}
|{�iWm~� O z8c2e~
 with { � <~> (4)

4. HIGHER-LEVEL STRUCTURES

4.1. Bouncing, Dropping, Breaking

Shortacousticeventslike impactscanstronglygainor changein
expressive content,whenset in an appropriatetemporalcontext.
Oneexampleis thegroupingof impactsin a “bouncing” pattern,
asit resultsfrom a constantexternal(gravity-)force term.

The one-dimensionalityof the impactalgorithmonly allows
the immediatesimulation of symmetrical, basically spherical,
bouncingobjects; thesesimulationsthroughan external gravity
term arevery realistic in detail, “too realistic” from a standpoint
of cartoonification: Theexact(accelerating)tempoof bouncingis
coupledto the impactparameters,andsimplificationson the el-
ementarysoundlevel necessarilyaffect the higher level pattern.
A strict physicalsimulationof irregular bouncingobjectson the
otherhand,would be highly complex to control and implement,
computational“overkill”. Instead,anexplicit modelingof typical
bouncing-patternsleadsto cartoonifications, that are efficient to
implementandable to expressecologicalattributeslike regular-
ity/irregularity of the bouncingobject. The main notionsbehind
thestructureandparametersof the“dropper” objectareshortly
sketchedin thefollowing.
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The first basic principle behind the processis the loss of
macro-kineticenergy of the global vertical, horizontaland rota-
tionalmovement,in friction andmicroscopic(e.g.acoustic)vibra-
tion. Theseloss-termsin exactnessaredifferentfor eachimpact,
andcanin this detail only be found from an elementarysimula-
tion asabove. Undertheassumption,thatthelossof (macro-)en-
ergy with eachbounceis proportionalto theremainingkineticen-
ergy, we receive an exponentially(in the numberof reflections)
decayingenergy term. If we further for sphericalbouncingob-
jects concentrateon the vertical movementand ignore the hori-
zontalandrotationaltermsas independent,the kinetic energy at
floor level is proportionalto the squarerootsof collision veloc-
ity and the durationof the following bounce. We thus arrive at
analogousexponentiallydecayingtermsfor impactvelocitiesand
temporalintervals in a regular bouncingmovement. The imple-
mentationof this basicschemein factprovedto beconvincing in
comparisonwith theafore-describedimplicit simulation(compare
figure2) aswell asrecordingsof bouncing(round)woodenballs.
For irregular objects,energy canbe transferredbetweenthe ver-
tical, horizontaland rotationalterms,of which only the vertical
velocity (and thereforethe maximumheight) contributesa sim-
ple termto theimpactintervalsandvelocities,while thecontribu-
tion of therotationalmovementis notexpressiblein asimpleform
(and that of the horizontalmovementis basicallyzero). Energy
transferthusresultsin deviationsof both, impact-intervals and-
velocities,from, but generallyboundedby, the(exponentiallyde-
caying)valuesof theregularcase.Similarly, alsotheeffective rel-
ative massesandtheweighting-factors of resonantmodes
aremodulatedthroughthe rotation(andthereforechangingcon-
tact points)of an irregular object. Summingup, while generally
theexactmovementin thenon-sphericcasecanonly besimulated
throughadetailedsolutionof theunderlyingdifferentialequations,
which would not make sensein our context of real-timeinterac-
tivity6, controlled-randompatternsof impactparameterscangen-
erateexpressive cartoonifications.Anotherimportantobservation
arestaticstagesin the bouncingmovementalsoof non-spherical
shapeswith certainsymmetriesof regular aspects(e.g. suchas
disksor cubes).In thesecasesthe transferof energy betweenthe
vertical, horizontalandrotationaltermscantake placein regular
patterns,closely relatedto thoseof sphericalobjects. This phe-
nomenonis exploitedin somemodelingexamples;oftenhowever,
suchmovementsincluderolling aspects,suggestingapotentialim-
provementthroughintegrationof rolling models. A very promi-
nentsoundexamplewith an initial “random”- anda final regular
stageis thatof a falling coin.

Following the previous observations, the “dropper” gene-
ratestemporalpatternsof impactvelocitiestriggeredby a starting
message.Controlparametersare:

1. Thetime betweenthefirst two reflections,representingthe
initial falling-height/-velocity, togetherwith

2. theinitial impactvelocity.

3. The accelerationfactor is the quotient of two following
maximal “bounce-intervals” and describesthe amountof
microscopicenergy loss/transferwith eachreflection,thus
thespeedof theexponentialtime sequence.

4. Thevelocity factoris definedanalogously.

6Also, it seemsquestionable,how preciselyshapesof bouncingobjects
(exceptfor sphericity)canberecognizedacoustically?

Notethattheseparametersshouldfor a sphericalobjectbe
equal(seeabove), while in exactnessbeingvaried(in de-
pendenceof actualimpactvelocities)in the generalcase.
In a context of cartoon-basedauditorydisplaythey canbe
effectively usedin a ratherintuitive freefashion.

5. Two parametersspecifytherangeof randomdeviation be-
low the (exponentiallydecaying)maximafor temporalin-
tervals resp. impactvelocities. The irregularity/sphericity
of anobject’s shapeis modeledin this way.

6. A thresholdparametercontrols,whentheacceleratingpat-
tern is stopped,anda “terminatingbang” is sent,that can
e.g.triggera following stageof thebouncingprocess.

Warrenand Verbrugge[8] study on the perceptionof breaking-
andbouncing-scenariosis astartingpoint for our relatedmodeling
efforts. They showed, thatsoundartefacts,createdthroughlayer-
ing of recordedcollision sounds,were identifiedasbouncingor
breakingscenariosdependingon their homogeneityandtheregu-
larity anddensityof their temporaldistribution.

Again the main ideasbehind the structureof the breaking-
model areshortly sketched: Typical fragmentsof ruptureareof
highly irregularform andratheranelastic,andtendto “nod” rather
than bounce,i.e. perform a deceleratinginsteadof accelerating
movement. It is furtheron importantto keepin mind thatemit-
tedfragmentsmutuallycollide,andthatthenumberof suchmutual
collisionsrapidlydecreases,startingwith amassive initial density;
thosecollisionsdo not describebouncingpatternsat all. Follow-
ing theseexaminationsthebreaking-modelwasrealizedby useof
the dropper with high valuesof “randomness”,anda quickly
decreasing temporaldensity, i.e. a time-factor �5< , set“opposite”
to theoriginal rangefor bouncingmovements.SupportingWarren
andVerbrugge’s examination,a shortnoiseimpulseaddedto the
attackportionof thepatternunderlinedthebreakingcharacter.

As anotherinsightduringthemodelingprocess,severalsound
attributesshowedto beimportant.Temporallyidenticallygrouped
impactsseemto be less identifiableas a breakingevent, when
tunedto a metalliccharacterin their modalsettings;this maycor-
respondto thefact thatbreakingmetalobjectsareratherfar from
everydayexperience.Also,extrememassrelationsof “striker” and
struckresonatorin theimpactsettings,led to moreconvincing re-
sults. Again, this is in correspondencewith typical situationsof
breakage:a concretefloor hasa practicallyinfinite inertiain com-
parisonto a bottleof glass.

4.2. Rolling

Among the various common mechanicalinteractionsbetween
solid objects,“rolling” scenariosform a category that seemsto
be characteristicalsofrom the auditoryviewpoint: Everydayex-
periencetells that thesoundproducedby a rolling objectis often
recognizableassuch,andin generalclearlydistinct from sounds
of slipping,slidingor scratchinginteractions,evenof thesameob-
jects. This maybedueto thenatureof rolling asthemostpromi-
nent continuous interactionprocess,wherethe mutual force on
the involved objectsis describedasan impactwithout additional
perpendicularfriction forces.

Consequently, the impact-algorithmhas beenembeddedin
a complex higher-level structureto reachan efficient cartoonifi-
cation, that can expressvariousecologicalattributesof rolling-
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Figure 3: Sketch of the fictional movementof a ball, perfectly
following a surfaceprofile s(x). Relative dimensionsarehighly
exaggeratedfor a clearerview. Note that this is not the de-facto
movement;this idealizationis usedto derivetheoffset-curve
to beusedby theimpact-model.

scenarios:material, size and shapeof the involved objects,as
well asvelocity or acceleration/deceleration(transformationalat-
tributes[2]). Themainobservationsbehindthedevelopmentand
structureof themodelarepresentedshortly:

4.2.1. Rolling interaction with the impact-modelas lowest-
levelbuilding block on a driving offset-curve

Rolling-contactbetweentwo objectsis restrictedto distinctpoints:
thesupportingsurfaceis not fully “traced”/followed,noris thesur-
faceof therolling object.Figure3 sketchestheidea;therolling ob-
ject is hereassumedto belocally sphericalwithout “microscopic”
surfacedetails. Theseassumptionsareunproblematic,sincethe
micro detailsof the surfaceof the rolling object can be simply
addedto the secondsurface(to roll on) andthe radiusof the re-
maining“smoothedmacroscopic”curve could be varied; in con-
junctionwith following notions,evenanassumedconstantradius
however showedto besatisfactory.

Theactualmovementof therolling objectdiffersfrom theide-
alizationof figure3 dueto inertiaandelasticity. In fact,it’ sexactly
theconsequencesof thesephysicalproperties,whicharedescribed
by, andsubstantiatetheuseof theimpactmodel(-equations).It is
further importantto notice that, in contrastto slipping-, sliding-
or scratching-actions,the interactionforce on the two objectsin-
volved in a simplerolling-scenariois approximatelyperpendicu-
lar to thecontactsurface(themacroscopicmeancurve), pointing
alongthe connectionline of the momentarypoint of contactand
the “centerof the rolling object”. This fact is not reflectedin the
sketches,sincehererelative dimensionsarehighly unrealistic,ex-
aggeratedfor purposesof display).Summingup, thefinal vertical
movementof the centerof the ball canbe approximatedby use
of the one-dimensionalimpact-modelwith theoffset-curve
shown in figure4.

In a naive approach,thecalculationof contactpointsis com-
putationallyhighly demanding:In eachpoint � alongthesurface
curve ���4��� 7, i.e. for eachsamplingpoint in our practicaldiscrete
case(at audiorate),the following condition,which describesthe
momentarypointof contact�2� , wouldneedto besolved:� � ��� � ��
 ,.���x�@��� �~� C�� �_� C	� � � �4��� ���Fg1&ag (5)� � �4�~� � ���4���W�d� & f �I�4��� � � f 
����6� � ��&a
 � �3&8�

7Herewe usethe unproblematicassumptionthat the surfacecurve is
presentableasa realfunction �'�8����� j¡ , �£¢¤¡ aninterval.

r

r
r

x
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Figure4: Sketchof theeffectiveoffset-curve, resultingfrom
thesurface ��� � � .
To facilitatea practical,real-time,implementation,a “smart” al-
gorithm had to be developed,that reducesthe numberof calcu-
lations/comparisonsby factorsup to < !~!a! . The idealoffset-
curve is then calculatedfrom the coordinatesof the contact
points.

4.2.2. Surfaceprofile

Thesurface-signalwhichisprocessedbya“rolling-filter” asabove
might bederivedthroughscanning/samplingof “real” surfaces.A
flexible statistics-basedgenerationthoughis preferablein ourcon-
text over thesumptuous,staticstorageof fixedprofiles.Onesuch
approachis fractal noise, i.e. noisewith a <_za�x¥ power spectrum,
therealparameter¦ reflectingthefractaldimensionor roughness.
Practicalresultsof modelingfollowing theso-fardevelopedmeth-
odshowever becamemuchmoreconvincing,whenthebandwidth
of thesurface-signalwasstronglylimited. This doesnot surprise,
whenonekeepsin mind that typical surfacesof objectsinvolved
in rolling scenarios,aregenerallysmoothedto high degree. (In
fact,it seemshardto imagine,whate.g.anuncutraw stonerolling
onanothersurface,typically modeledasa fractal,let’ssayasmall
scalereproductionof thealps,would soundlike?) Smoothingon
a largescale,e.g.cuttingandarrangingpiecesof stonefor a stone
floor, correspondsto high-pass-filtering,while smoothingonami-
croscopiclevel, e.g. polishing of stones,can approximatelybe
seenaslow-pass-filtering.In connectionwith this resultingband-
pass,the <_za�x¥ characteristicsof theinitial noisesignallost in sig-
nificance. Band-passfiltered white noise thus was chosenas a
cheapandefficient solution; it caneventuallybe enhancedby an
additionalsecond-orderfilter, whosesteepnessfinally representsa
“microscopic”degreeof roughnessasaverycoarseapproximation
of thefractalspectrum.

Of course,the parametersof the impact itself, in particular
the elasticity constant

�
, can/mustalso be carefully adjustedto

surface-,e.g. materialpropertiesand strongly contribute to the
expressivenessof themodel.

4.2.3. Higher-level features

Typical scenariosof rolling tend to show characteristic“macro-
scopic”acousticfeatures,thatappearto beof high perceptualrel-
evance,especiallyfor velocity-expression.Macro-temporalperi-
odicities result from typical patternsof more or lessregular na-
tureasfoundon many “ground” surfaces(suchasjoints of stone-
or woodenfloors, the periodic texturesof textiles or the pseudo-
periodicfurrows in woodenboards).Seeminglyevenmoreimpor-
tant,for rolling objects,thatarenotperfectlyspherical(in thesec-
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tion relevant for the movement),thevelocity of thepoint of con-
tact on both surfacesand the effective force pressingthe rolling
object to the groundvary periodically. In order to model such
deviationsfrom perfectsphericity, thesetwo parametersmustbe
modulated,ourpracticalexperienceshowing a highersignificance
of pressing-force;a goodchoiceareobviously sinusoidalor other
narrow-bandmodulationsignals(sinceobjectsthatdiffer toomuch
from asphericalshape,thataretooedgy, don’t roll!). Of courseall
(quasi-)periodicmodulationshave to reflecttherolling-velocity in
their frequency.

Finally it is to benotedthat,like in everydaylistening,acous-
tic rolling scenariosarerecognizedandacceptedmoreeasilywith
“typical dynamics”: As an example, considerthe sound of a
falling marble,that bouncesuntil constantcontactto the ground
is reached,now the rolling actiongetsacousticallyclearandthe
averagespeedslowly decaysto zero.

4.3. Crumpling

Likemostothersoundspresentedin thiscatalog,crumpling re-
sultsfrom providing theimpactmodelwith a control layer. Since
crumpling doesnot modelphysicalcontactsbetweensolid ob-
jects,but ratherspecialtimesequencesof bends,theuseof closed-
form formulasexpliciting interactionmechanismscanbeavoided.

Impactsaretriggeredfollowing stochasticlaws which arede-
rived from the physicsof crumpling[9]. Suchlaws rule the dy-
namic and temporalstatisticsof thoseimpacts. By including a
notionof energy in thecrumplingprocess,wecancontrolthetime
lengthandtheoveralldynamicsof individualevents, eachonecon-
sistingof a collectionof “crumples”.

Thephysics-basedapproachto crumpling-soundreproduction
producesa control layerwith physicalparameters.Theadvantage
of having suchparametersat handis twofold: first, thosephysi-
cal controlscanbe interfacedwith the impactdriving parameters
directly; second,the user interfacepresentsa consistentcontrol
panelto theuser, without theneedof intermediatemapslayeredin
betweenthemodelandtheuserinterface.By meansof thisdesign
approachwewereableto synthesizesoundsof crushingcans.

Aiming at yet a higherlevel of scenariosto be modeled,the
“user” canbe a top-level control structure,which triggersevents
accordingto somerule. Rulesgoverningthe temporalevolution
of walkingandrunningexist,whicharephysics-based[10]. Those
rulesdrive thecrumplingmodelparametersdirectly, in a way that
we have obtainedinterestingwalking andrunningsounds.

Crushing,walkingandrunningareextensively describedin an
articlesubmittedfor theseproceedings.

5. FAMILIAR (SOUNDING) OBJECTS

Theexpressivenessof thesoundmodelsis bestrecognized,when
parametersaresetto example-valueswithin thewide ranges,that
are connectedto scenariosfamiliar from every-day experience.
Suchdemonstrationsoftenenvolve combinationsof severalmod-
els; we have chosensomeitems,partly accompaniedwith basic
visualizations,from rathersimpleto complex ones:§ The soleimpact-modelcanbe tunedto struckbarsof dif-

ferentsizesandmaterials,§ asthelow-level friction-modelcanrealizesqueakingdoors
andrubbedglasses.

§ The rolling-modelwith its strongecologicalpotential(ve-
locity, direction, size . . . ) sonifies different interactive
“games”with rolling balls.§ Rolling andfriction aretwo statesof aninteractive wheel–
brake construction.§ The dropper-object delivers convincing bouncingballs as
well asdroppingplasticbottles,metalliccoinsandbreaking
glasses.§ Natural is the combinationof droppingand subsequently
rolling balls.§ Typical scenesof crumpling are crushing cans and the
soundof walking ongravel.
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