Proceedings of the 18t Sound and Music Computing Conference, June 20th_ July 15t 2021

RUFFLE: A USER-CONTROLLABLE MUSIC SHUFFLING ALGORITHM

Giorgio PRESTI (giorgio.presti@unimi.it) (0000-0001-7643-9915) 1,

Federico AVANZINI (federico.avanzini@unimi.it) (0000-0002-1257-5878) ',

1

Adriano BARATE (adriano.barate@unimi.it) (0000-0001-8435-8373) 1,
Luca Andrea LUDOVICO (luca.ludovico@unimi.it) (0000-0002-8251-2231) !, and
Davide Andrea MAURO (maurod@marshall.edu) (0000-0001-8437-4517)2

Laboratorio di Informatica Musicale (LIM), Department of Computer Science, Universita degli Studi di Milano, Italy
2Department of Computer and Information Technology, Marshall University, USA

ABSTRACT

Music shuffling is a common feature, available in most au-
dio players and music streaming platforms. The goal of
this function is to let songs be played in random, or con-
strained random, order. The results obtained by in-use
shuffling algorithms can be unsatisfactory due to several
factors including: the variability of user expectations to
what constitutes a “successful” playlist, the common bias
of being unable to recognize true randomness, and the ten-
dency of humans to find nonexistent patterns in random
structures. In this paper, a new shuffling algorithm called
Ruffle is presented. Ruffle lets the user decide which as-
pects of the music library have to be actually shuffled, and
which features should remain unchanged between consec-
utive extractions. First, an online survey was conducted to
collect users’ feedback about the characteristics used for
shuffling. It is worth noting that, in general, the algorithm
could address any metadata and/or audio extracted feature.
Then, in order to test the algorithm on personal playlists, a
Web version based on Spotify API has been released. For
this reason, a second survey is marking an ongoing effort
placed on validating the effectiveness of the algorithm by
collecting users’ feedback, and measuring the level of user
satisfaction.

1. INTRODUCTION

The shuffle feature of a music player is a well known func-
tion that lets the user listen to each song of the personal
catalog in a pseudo-random order. In [1] the shuffle mode
is defined as “a control that paradoxically involves a renun-
ciation of control on the part of the user”.

People may use such a function for many reasons, includ-
ing the reduction of boredom in listening, the need to keep
the attention alive, the search for “serendipity” [2], etc. For
a general overview of shuffle in music, see [3,4].

As shown in [5], humans are hardly capable not only
of identifying, but also of generating random sequences
of numbers. This is mainly due to two phenomena: i)

Copyright: © 2021 the Authors. This is an open-access article distributed un-

der the terms of the Creative Commons Attribution 4.0 International License, which

permits unrestricted use, distribution, and reproduction in any medium, provided the

original author and source are credited.

207

the gambler fallacy [6], that consists in thinking that, in
a memory-less random draw, previous drawings have an
influence on the actual ones, and ii) the clustering illusion
[7], that consists in erroneously considering small clusters
of samples from random distributions to be non-random.

An ambiguity when talking about the randomness of a
playlist in natural language is whether to compute the or-
der of the songs with or without regard of their metadata.
In the latter case, music pieces can be seen as completely
different objects drawn at random, even if they may share
some common values for metadata; in the former case,
the expected behavior is to travel the song space with the
longest possible path, such that the distance of each con-
secutive song is maximized with respect to some proper-
ties. This can be seen as an interesting variant of the Trav-
elling Salesman Problem, which is, in turn, a special case
of the Longest Path Problem.

In order to manage the complex and multifaceted prob-
lem of how to shuffle songs in a playlist, a new algo-
rithm, called Ruffle, has been developed. Ruffle generates
a pseudo-random sequence that matches the user’s prefer-
ences about what must be shuffled, and to what extent. It
does so by exploiting the gambler fallacy to present the
problem to the users, which makes their choices, that in
turn (together with what has been previously drawn) will
affect the probability of the remaining songs in the list to
be drawn for the next play.

The rest of the paper is organized as follows: Section
2 provides the state of the art about industry standards
and commercial applications integrating a shuffle func-
tion; Section 3 presents a survey designed to understand
user preferences about playlist shuffling, also discussing
the collected results in order to guide the design of a new
approach; Section 4 focuses on Ruffle, a user controllable
shuffle algorithm; Section 5 provides an early assessment
of Ruffle, presenting a web-based implementation that in-
terfaces with Spotify API, and the outcomes of a survey
where participants tested its functionalities in an actual
scenario; finally, Section 6 draws the conclusions.

2. STATE OF THE ART

Before presenting the state of the art, it is worth remark-
ing the distinction between a shuffle function and a music
recommendation system. A shuffle algorithm simply re-

Proceedings of the 18th

orders a given list of songs already available in the user’s
collection. This operation can also be performed by taking
into account some preferences about the desired outcome,
but no user data out of the scope of a listening session is
involved. Conversely, a recommendation (or suggestion)
system aims at proposing content that is not necessarily
already in the user’s collection [8]. Moreover, this task
is typically accomplished by modeling user’s preferences
and making inferences about musical tastes based on long-
term behaviors. Some algorithms may combine the two
approaches, e.g. by changing the shuffle strategy based on
user’s actions such as song skips, implicitly interpreted as a
manifestation of dislike towards a particular genre or artist.
For the sake of clarity, this paper deals with the shuffle
problem only, without making any inference.

A number of algorithmic approaches can be used to pro-
duce a randomly shuffled sequence of elements in a list.

The Fisher-Yates shuffle, whose original form dates back
to 1938, represents a way for generating a random permu-
tation of a finite sequence. The algorithm puts all the el-
ements into an unordered set, i.e. a container that stores
unique elements in no particular order, and establishes the
next element in the sequence by randomly drawing one of
them from the set until no elements remain. The algo-
rithm produces an unbiased permutation, i.e. every permu-
tation is equally likely. First described in [9] and originally
conceived as a pencil-and-paper method, its computer im-
plementation was documented in [10] and later published
in [11]. A critical issue of the algorithm is that one of its
steps requires to pick a random number, but only a high-
quality unbiased random number source can guarantee un-
biased results. The Fisher-Yates algorithm is at the base of
the implementation proposed in [12].

The application domain represented by a music collec-
tion introduces some additional requirements. In fact, sin-
gle music pieces often share some characteristics with oth-
ers, and a good shuffle algorithm could try to maximize
the distance considering also such similarities. For exam-
ple, multiple songs in a dataset could be authored and/or
performed by the same artist(s), could belong to the same
genre, could share the same ensemble, etc.

This problem has been addressed in [13], where a form
of balanced shuffle is proposed. The idea is to merge pre-
shuffled playlists, each one made of pieces belonging to
the same group, where a group contains elements sharing
similar properties as it regards a given dimension. For the
sake of clarity, let the chosen dimension be the genre: a
group contains all classical pieces, another group all jazz
pieces, and so on; each sub-playlist is shuffled; finally, a
merge-and-mix operation is conducted to transform pre-
shuffled sub-playlists into a single playlist.

Singh et al. [14] proposed a form of predictive shuffling
that can provide automated dynamic-based shuffling ac-
cording to the user’s preferences by taking into account
various parameters (e.g. genre, artist, play duration and re-
lease date) and selecting the next song accordingly.

An original approach described in the literature is so-
called responsive shuffling [15], that benefits from tempo-
ral, spatial, and mental context awareness. Based on inter-

208

Sound and Music Computing Conference, June 20th _ July 15t 2021

active soundscape concepts and wearable-computing tech-
nologies, this work proposes context-driven playlist shuf-
fling for music listening in mobility.

Concerning documented shuffle functions in commer-
cially-available services, Spotify ' initially started from
the Fisher-Yates algorithm, then evaluated the balanced
shuffle described above, and finally moved to a method
which is claimed to be inspired by image dithering [16].

Pandora? implements different forms of shuffle depend-
ing on user’s privileges: premium subscribers have more
flexibility with their shuffle options and can shuffle songs
as well as the content on playlists or stations. The set of
music features that can be considered comes from Pan-
dora’s Music Genome Project, an effort to “capture the
essence of music at the most fundamental level” [17] em-
ploying over 450 attributes, called genes, to describe songs
and a complex algorithm to organize them.

Although some of the shuffling algorithms mentioned
above implement advanced features (such as considering
a subset of metadata to vary or, conversely, to keep fixed
among consecutive draws), such a mechanism is usually
hidden from the user, with little to no room for controls, so
the results may not match personal preferences.

3. TUNING TO LISTENERS’ PREFERENCES
3.1 Survey design

In order to understand in detail users preferences and
desiderata about the shuffle listening experience, an online
survey was carried out.

The survey is made of three parts. The first part col-
lects general information about the user such as the average
daily listening time, the preferred player/platform, how of-
ten a shuffle function is used when organizing a playlist,
and the level of satisfaction with the shuffle behavior.

The second part consists of an open question inviting
users to reflect on which, according to their opinion, should
be the aspects used in constraining a shuffle algorithm (e.g.
preserving the same tempo, or genre), and what constitutes
a “successful” playlist.

Finally, users are requested to express their preferences
regarding specific parameters: 1. genre, 2. artist, 3. album,
4. BPM, 5. language, 6. publication date, 7. instrumental/-
song, and 8. allowing repetitions.

Further comments are allowed as free text in the last page
before submission. Surveys have been conducted in Italian
and they are here translated to English.

3.2 Survey results and discussion
3.2.1 Users overview

In total, 84 answers were collected from Italian users. The
subjects are 56% males, 42% females, and 2% not speci-
fied; 64% were 17-24 years old, 13% in the range 25-30,
15% in range 31-50, and 8% > 50.

Listening habits: 11% listens to less than 1 hour of mu-
sic per day, 44% listens to 1-2 hours, 24% 2-3 h, and 21%

"https://www.spotify.com
nttps://www.pandora.com

Proceedings of the 18th

more than 3 h. Most used listening platforms are Spotify,
Youtube, and personal libraries, in particular the preferred
combinations were Spotify+Youtube 37%, Spotify only
23%, Youtube only 6%, and Spotify+Youtube+Personal
5%; the remaining 29% uses a variety of combination of
the above services and others, such as, in preference order,
Amazon Music, Apple Music, Google Play Music, Deezer,
TIDAL, web or analog radio, Bandcamp.

About the use of the shuffle function, 29% rarely uses it,
18% sometimes, and 53% frequently. 24% are not satis-
fied by the shuffle function, 43% are neither satisfied nor
unsatisfied, and 33% are satisfied.

Use of shuffle correlates weakly with age (spearman
R = 0.3, p < 0.005), in particular almost all subjects with
age > 50 rarely uses shuffle, while subjects with age < 50
present more heterogeneous behavior.

3.2.2 Open question about shuffling

Concerning the open question, the 84 participants provided
a number of different comments. A manual clustering re-
vealed three wide categories: 3

¢ Randomness (21 comments);

* Music properties (48 comments);

* Suggestion systems (28 comments).

The comments regarding randomness may be summa-

rized by the following 4 sentences:

R1 All available songs should be shuffled as randomly
as possible, without distinctions (7 comments);

R2 A song should not be re-played until all songs have
been played (5 comments);

R3 Shuffle should produce very different sequences
across listening sessions (8 comments);

R4 Shuffle outcome should be stored in case the listener
is interested in navigating the playlist (1 comment).

In regard to R1, Fisher-Yates should be the preferred
choice, unfortunately none of the 7 users really meant it,
since when asked whether a feature may be kept constant
or variable across plays, or whether the feature must be
irrelevant, almost all answered the artist and album must
vary, the genre must stay constant, and they left only BPM,
language, and publication year as actually random. This is
no surprise, since it has already been discussed how hu-
mans, on average, have no precise insight on how random-
ness behaves.

Even if R2 may seem obvious, when explicitly asked
about this aspect, not all subjects agreed (more on this in
Sec. 3.2.3).

Note that R3 may seem to suggest something differ-
ent from the equiprobability of the sequences that make
Fisher-Yates an adequate algorithm, nevertheless, if we in-
terpret this as an extension of the previous one (i.e. “A song

3 Number of comments may add up to more than number of partic-
ipants, since many participants provided multiple comments; moreover,
also the expanded views of the clusters may add up to more than the total
cluster comments count, since some comments are two-folded, e.g. com-
ment “Artist and genre may stay constant” expresses an interest both in
the “artist” and “genre” metadata, and the fact that the shuffle may pro-
duce coherent outcomes accordingly.

209

Sound and Music Computing Conference, June 20th _ July 15t 2021

should not be re-played until all songs have been played,
even across different sessions”), then Fisher-Yates is still a
valid approach.

The behavior described in R4 is usually implemented
in modern platforms as “user history”, or directly by de-
sign when the shuffle function works offline, and returns a
playlist instead of one-by-one songs.

The comments regarding music properties may be sum-
marized by the following 6 sentences:

M1 Shuffle should be aware of music properties (48
comments). In particular, the following were cited:
Genre (19 mentions); Artist (10 mentions); Generic
“properties” (9 mentions); BPM (4 mentions); Mood
(3 mentions); Album (2 mentions); Key (2 men-
tions); Release year (1 mention); Song duration (1
mention); Instruments (1 mention); Timbre (1 men-
tion).

M2 All proposed songs should be strictly coherent in
terms of one or more properties (17 comments). In
particular, it was specified in 3 comments that a user-
selected song should set the baseline;

M3 Some incoherence can be tolerated in order to avoid

monotony (4 comments);

M4 Changes of music properties should be gradual (8

comments);

MS5 Consecutive songs should be very different in terms

of one or more properties (4 comments);

M6 It should be possible to choose between “coherent”

and “incoherent” behavior (2 comments).

Properties frequently cited in M1 confirm the validity of
the items selected for the multiple choices version of the
question (see Sec.3.2.3), except for the mood, which was
not considered. The 9 mentions of some “generic prop-
erty” may be implemented by adding audio features as well
as metadata in the algorithm, nevertheless, not all players
support this level of detail. It should be noted that some
of these sentences are in contrast with each other (e.g. M2
and MS5), thus a good shuffling feature should be tunable,
as suggested in M6. Finally, M4 implies that it is worth
considering the introduction of some sort of “memory” in
the shuffle algorithm.

The comments regarding recommendation systems may
be summarized by the following 6 sentences:

S1 Priority should be given to frequently listened songs
(5 comments);

S2 Some inference about musical taste is expected (9
comments);

S3 Some music discovery algorithm is expected (4 com-
ments);

S4 Song skipping should be considered in future draw
(7 comments);

Proceedings of the 18th

Subj ects preferences
T T

T T
[Const ant
I Var i abl e
i rrel evant

of subjects
N w B
o o o

=
o

Genre

Artist Al bum BPM Language Year

Figure 1: Hypothetical preferences expressed by subjects.

S5 Context information (such as current time and ge-
olocation) should be considered (2 comments);

S6 The algorithm should teach something to the user (1
comment).

Sentences like S1-3 and S5 will be ignored, since they
must rely on user information and recommendation algo-
rithms.

The feature described in S4 is somehow borderline be-
tween shuffling and suggestion, it may be worth consid-
ering it in future works, and let this work focus on pure
shuffling.

S6 is also related to a recommendation algorithm, nev-
ertheless it provides a hint toward a shuffle algorithm that
lets you pick a path in the songs feature space. Yet another
feature that can be explored in the future.

3.2.3 Multiple-choice questions about shuffling

As a first question, subjects were asked to tell, for each
metadata (genre, artist, album, BPM, language, and re-
lease year) if that should remain constant among plays, if
it should vary, or if should be irrelevant. Figure 1 shows
an overview of the answers. The sum of “constant” and
“variable” preferences has been interpreted as a score of
the wish to have control over it. All metadata received a
score greater or equal to 50%, except for language, which
is slightly less than 50%.

In more detail, 49 unique combinations of answers were
given: 31 combinations were selected only once, 11 com-
binations appeared twice, and only the remaining 7 combi-
nations were selected three or more times (these are visible
in Table 1). This considerable variability, with some fre-
quent choices, is two-folded: on one side the presence of
frequent choices can suggest that some template behavior
for shuffle algorithms may be useful, but on the other side,
to meet the needs of most users, a fine tuning mechanism
seems desirable.

To further investigate if a pattern is present when tolerat-
ing some small differences in the answers, answers to this
question were clustered using linkage hierarchical cluster-
ing method. Specifically, the hamming distance was se-
lected to compute distances between pairs of answers, and
weighted average distance was used as linkage. The tree

210

Sound and Music Computing Conference, June 20th _ July 15t 2021

was cut so to retain most of the groupings of Table 1 with-
out creating neither many small clusters nor large heteroge-
neous clusters. The resulting cluster’s medioids are visible
in Table 2.

Clustering revealed that most of the answers appearing
only once can be considered very similar to the frequently
given combinations, especially 1,2, and 7. The only new
cluster (8) can be considered as a truly random version of
2, and one answer (with ID 9) resulted to be so different
from the others to be considered the only true outlier.

In conclusion, 92% of the answers can be traced back to
the 7 most populated clusters, and in particular clusters 1
and 2 captures almost half the total preferences.

Regarding the possibility to influence the shuffling algo-
rithm by limiting the reproduction of vocal or instrumental
tracks, 75% of users agreed.

On the possibility of repeating the same song twice in
the same listening session, 79% of answers were negative,
15% and 5% of users considered it acceptable only after a
long time or even after a short time, respectively, and the
remaining 1% considered this feature to be irrelevant.

3.3 Lessons learnt

The survey highlighted a set of desiderata for the shuffling
algorithm, which can be synthesized as follows:

D1 Songs should not be replayed until the whole song
list has been played;

D2 Available properties such as metadata and audio fea-
tures should be considered;

D3 A tuning mechanism between constant and variable
behavior should be provided;

D4 The system is supposed to have a short-term memory
to ease gradual changes in properties;

D5 There should be the ability to seed the algorithm by
picking a reference song.

Answering D1 and D5 is trivial, while D2 and D3 are at
the core of Ruffle. D4 has been implemented by introduc-
ing a memory parameter [3 which acts on the responsive-
ness of the system.

4. THE RUFFLE ALGORITHM

The rationale behind Ruffle is to update after each draw
the probability of other songs to be drawn, according to
songs properties and user settings. In particular, a similar-
ity 0 between the drawn song and the remaining ones is
calculated for each considered property, and a probability
weight is associated to the songs, which is either directly
or inversely proportional to ¢ based on user decision.

4.1 Variables

Let be a set of N songs:

@y [0 <n < N} €]

TN = {1’17 T, -

Proceedings of the 18t Sound and Music Computing Conference, June 20th_ July 15t 2021

ID Genre Artist Album BPM Lang. Year Count Mnemonic

I \Y \ \ \Y \Y \Y% 8 Forced randomness

2 C \% \% I I 1 6 Genre exploration

3 1 1 1 1 1 1 4 True randomness

4 v \% \% I I 1 4 Enhanced randomness
5 C \% \% v C I 3 Cultural niche

6 v \ \ \% I \'% 3 Tolerant randomness
7 \Y \Y \Y C 1 C 3 Memorabilia DJ

Table 1: Most selected combinations. Some mnemonic names are given (V: Variable; C: Constant; I: Irrelevant).

ID Genre Artist Album BPM Lang. Year Count Mnemonic

I \Y \Y \Y \Y \Y \Y 19 Forced randomness

2 C \'% \'% I I 1 21 Genre exploration

3 1 1 1 I I 1 7 True randomness

4 \% \% \% 1 1 1 9 Enhanced randomness
5% C \% 1 \% C 1 6 Refined cultural niche
6 v v v A\ I v 5 Tolerant randomness
7 \Y% v \% C I C 11 Memorabilia DJ

8 C 1 1 I I 1 5 Genre strolling

9 C 1 \ C I \Y% 1 Genre DJ

Table 2: Cluster’s medioids. Some mnemonic names are given (V: Variable; C: Constant; I: Irrelevant).

let c;, be an execution queue of L < N songs, initially
empty:
cal0<1<L}; @

Cr :{017 Coy -

let ' g be a subset of &, composed of R < N remaining
songs, initialized as ©’'g = xN:

'R Can; 3)
let x o be the last song inserted in the queue, such that
za€xy & zad TR & 0<ALSN. @)

let a,, s be a set of M attributes associated to a song x,, €
TN

Qn)N = {an,h Ap2, 5 Gpm |0 <m<]‘J}v (5)
let sps be a set of M user-controllable settings, such that

each setting s, & P(Gpm = @Am):

JSnl0<m <M & 0<s,<1}.
Q)
each setting is meant to be set to 0 in order to force vari-
ation of the corresponding attribute between two consec-
utive draws, and 1 to force the attribute not to change. A
value of 0.5 emulates random variations of the attribute.
Finally, let 0 < 8 < 1 be a memory coefficient of the
system, indicating to what extent previous draws will in-
fluence the next ones; 5 = 0 will only consider the com-
parison between x 5 and the examined song, while 5 > 0
will also consider the previous results, with the limit case
of 8 = 1, where the comparison is made only with the first
song extracted.

sy = {s1, 52, -

4.2 Similarity function

Since all attributes have different nature and units, it is not
possible to rely on a single similarity function. Songs at-
tributes can be categorical or scalar values: for example,
author and album title are categorical, while BPM, year,
and audio features are scalar. In both scenarios, similarity

211

is expected to be either O or 1. Specifically, in the former
case similarity can be expressed as:

0, ifa#b

axb:= . .
1, ifa=0

@)

In the latter case, scalar values are compared in order to
obtain a continuous distance measure, then the discrete
similarity value is computed by considering a distance
threshold (whose value depends on the attribute type) and
setting similarity to O if the continuous distance is above
the threshold, and to 1 otherwise.

4.3 Weighting function

At each draw, each song z,, € xy is paired to a probabilis-
tic weight p,,, so to have a set py of values computed as:

0, if © x’
Pn = R)

Bpn+ (1—=p) 71,, otherwise

with
M

Tn = Hm:1(2' ‘sm+6n,m*1|+€)7

©
5n,m = Qn,m X QA m-

Here 6, ,,, represent the similarity between x, and xa
along the m™" attribute, while 7,, can be interpreted as fol-
lows.

The most important part in the definition of 7, is
the argument of the product, as it dictates how the at-
tribute a,, influences the probabilistic weight; the term
Sm 4 On,m — 1| takes the same value of the similarity
On,m if the corresponding setting value is s,, = 1; it be-
comes 1 — 0y, ,, when s,,, = 0; and it converges to 0.5 re-
gardless of the similarity value as s,,, approaches 0.5. The
additive term 0 < e < 1 is a very small value needed to
avoid all-zeros in py, while the multiplication factor of 2
has been introduced in order to produce a neutral contribu-
tion for s, = 0.5 and an amplification when needed.

Finally, note that the update of p,, in Eq. (8) is based on
the previous value of p,,, with the 3 parameter acting as a
weight influencing the responsiveness of the change.

Proceedings of the 18th

Description Shape Color Output

Random 0.5 0.5 [| HAA
Alternate 0.0 0.5 [] ANA
Sort 1.0 0.5 EEEAAA
Interleave 0.0 1.0 HA HA
Mix 0.0 0.0 HANANA
Group 1.0 1.0 HA HA

Table 3: Example of different settings, with 6 colored
shapes. [is not considered to simplify the understanding
of the base behavior.

4.4 Algorithm and discussion

set o = (manual or random choice)
set ¢, =9
remove z, from z'p
while z'p # @ && |*'r| < L:
compute py
draw z, from zy according
add z, to cr;
remove z, from z'g;
set zaA=2x,.

to pn;

To picture the possible results of this algorithm, consider
the case in which Ruffle is used to shuffle colored geo-
metric shapes, where the available attributes are color and
shape. Starting with a set of 6 elements (3 squares and 3
triangles, forming 3 pairs of colors) the outcomes depicted
in Table 3 are possible.

One known drawback of this approach is that all songs
that do not manage to fit in the shuffled stream will con-
centrate at the end of the playlist. This can be resolved by
communicating to the user that no more songs are com-
pliant with the settings once the maximum of remaining
weights falls under a certain threshold, or can be ignored if
the user wants to play the available library completely.

Another possible drawback is that low values of the prod-
uct terms in 7, (i.e. close to 0) have a stronger influence
when multiplied together than high values (i.e. close to 2).
Future implementations will consider a logarithmic type of
function for the computation of 7 and will assess if it can
actually improve the outcomes.

A future evolution could be the generalization of the
weight function to non-binary similarity values, in order to
take advantage of the continuous nature of scalar attributes
and provide more sensitivity to the algorithm.

Finally, a deterministic version of Ruffle is possible,
if the draw in the while loop is done by looking for
argmax,, (py), nevertheless this case is out of the scope
of this paper.

4.5 Possible optimizations

In Eq. (8), and in the pseudo-code above, the computation
of py is carried out on all xy songs just for the sake of
clarity, of course the computation of py can be restricted
only to those songs in &’ g, without loss in generality.
Beside this, note that since the present work focuses on
the validation of the algorithm in its original form, no

212

Sound and Music Computing Conference, June 20th _ July 15t 2021

heuristic optimizations were implemented. Nevertheless
some suggestions are provided in the remainder of this sec-
tion.

Since Eq. (8) is computed N°+N /2 times, the complexity
of the algorithm ends up to be O(N?2). Of course this is
not ideal for large music libraries.

In case of 8 = 1 (i.e. only the first song is considered),
there is no need to compute weights more than once, thus
reducing the complexity to O(N).

Aside from this special case, other improvements may
be implemented by storing lookup tables for categorical
features such as genre, artist, album etc. even if this does
not strictly reduce complexity.

An interesting heuristic may amount to initially shuffle
the list with Fisher-Yates, then compute the weights only
until a song’s weight exceeds a certain threshold. The
threshold can be computed as slightly less than the max-
imum weight possible, which is the product of all sy,
in that case the song is picked for next play. If no song
reaches the threshold, weights are ready for a regular draw.
This heuristic is not ideal for low values of 3, since in this
case weights are not guaranteed to be up to date.

An alternative to the previous heuristic (assuming that
B < 1) is to shuffle the list with Fisher-Yates, then com-
pute the weights only for a fixed number of songs follow-
ing the one played, and limit the draw in this sliding win-
dow.

Finally, consider that real time is not a constraint of the
algorithm, since weights can be updated while the user is
listening to the song.

5. ASSESSMENT

To assess the validity of Ruffle as a usable shuffling algo-
rithm, it has been implemented as a tool to shuffle Spotify
playlists, in order to let users evaluate the algorithm before
answering a survey.

5.1 Implementation

The tool is based on the Spotify Web API, and is imple-
mented using the vue.js* framework. After logging in to
their Spotify account, users are able to see the list of their
saved tracks, together with a section devoted to load single
playlists’ content. Using the Web API, for every track the
system retrieves 18 properties: 1. track title, 2. artists, 3. al-
bum title, 4. genres (associated to artists), 5. release year,
6. duration, 7. key, 8. mode, 9. time signature, 10. acous-
ticness, 11. danceability, 12. energy, 13. instrumentalness,
14. liveness, 15. loudness, 16. speechiness, 17. valence,
and 18. tempo. Users can see the values of these properties
in the track details. The properties are automatically com-
puted by Spotify, and there is no control or direct knowl-
edge over the algorithms that are implemented for this task.

A sidebar is used to change the settings, i.e. the 8 and
the s, values, with a set of sliders; a number of presets
are available, representing the 5 most selected clusters of
Table 2, together with 2 configurations never chosen in pre-
vious tests.

4https://vueijs.org/

Proceedings of the 18t Sound and Music Computing Conference, June 20th_ July 15t 2021

After choosing a preset or manually adjusting single val-
ues, users can run the Ruffle algorithm, obtaining a re-
ordering in the list of tracks.

The re-ordered tracks can be also saved in a new playlist.

5.2 Evaluation survey

The survey is composed of 4 main parts: a briefing sec-
tion, containing information about Ruffle, and instructions
on how to use the implemented Spotify Playlist Shuffler.
Please note that it was explicitly asked to focus the atten-
tion to the shuffling outcomes rather than the usability of
the prototype, since the latter is not the focus of the paper.

The second part repeats some of the questions of the first
survey aimed at describing the sampled population, i.e.
sex, age, average daily music listening time, usage of shuf-
fle function and satisfaction about the currently used shuf-
fle.

The third part focuses on general impressions on the Ruf-
fle algorithm, asking questions about the usefulness of: the
available properties, the algorithm itself beside available
properties, and the [parameter. Users were also asked to
evaluate how much they liked Ruffle, and if they would use
it if implemented in a music player.

In the last part users were asked to evaluate how fre-
quently they would use each of the presets present in the
prototype (note that the “true randomness” preset can be
considered as a baseline, since it is equivalent to Fisher-
Yates), they were also asked to enter the preferred settings
they experienced, and if they would likely change settings
frequently, use a finite (small) set of presets, or just use a
“set and forget” approach. Finally they were asked to enter
free comments if they had any.

The last two parts were aiming at validating what has
been observed in Section 3 and evaluating the acceptance
of the Ruffle algorithm.

5.3 Results

In total 23 users were tested. This survey and the one de-
scribed in Section 3 have been administered to two differ-
ent populations, nevertheless, the distributions of answers
to the first section were substantially similar.

The algorithm itself (beside available properties) has
been marked as useful 17 times, not useful 1 time, and
neither useful nor useless 5 times. Similarly the Beta pa-
rameter has been marked as useful 17 times, not useful 1
time, and neither useful nor useless 5 times. Furthermore,
19 users liked Ruffle (versus 1 that did not liked the algo-
rithm, and 3 which were neutral about it), and 22 over 23
said they would use it in real applications, thus demonstrat-
ing that Ruffle is indeed a desirable feature. The properties
marked as useful are reported in Table 4, together with the
number of votes received.

Properties such as theme (intended as “Christmas songs”
etc.), instruments, mood, and language were manually in-
serted by subjects.

This not only provides a detailed view of what has been
observed in Section 3, but also refines results in a real
world scenario, since answers to the preliminary test were
given in an hypothetical scenario. In particular it can be

213

Attribute Votes Attribute Votes
Artists I8 Loudness 5
Genres 14 Mode 5
Danceability 13 Time Signature 3
Energy 13 Valence 3
Instrumentalness 13 Duration 2
Album Title 9 Language 2
Release Year 9 Liveness 2
Tempo 7 Instruments 1
Speechiness 6 Mood 1
Acousticness 5 Theme 1
Key 5

Table 4: Properties marked as useful by Ruffle users.

Preset evaluation
T

I Never
[_Jsometimes
—JFrequently

I-nlua s

10

of subjects

Forced
randomness exploration

Genre Memorabilia Enhanced
3]

True

ALl
randomness randomness constant

Psycho

Figure 2: Answers to the question “Would you use this
preset in your shuffling sessions?”

Custom combinations

of subjects
®
T

Figure 3: Composition of reported custom presets (for 3
only, blue =~ 1, yellow ~ 0.5, red ~ 0).

seen which audio features are more interesting for users,
sometimes even more than metadata.

As reported in Figure 2, the most cited configurations of
Table 2, when selected by users, revealed to be perceived
slightly differently from the expectations. In particular,
only “Genre Exploration” clearly outperformed the 2 pre-
sets expected to be disliked, which indeed were.

From another perspective, Figure 3 shows how the pre-
ferred settings are distributed. This picture highlights how
the expressed preferences differed from the “Genre Explo-
ration” preset. This seems to contrast with the outcome of
the previous question, but it is worth stressing that the pre-
sented presets were working only on 5 principal metadata
(Genre, Artist, Album, BPM, and Release Year), while the
manual settings were those made available by Spotify and
previously listed. This may suggest that, in case of very
basic settings, “Genre Exploration” is the most useful ap-
proach; nevertheless, when the possibility to finely tune
preferences is offered to the user, system customization is
a very appreciated feature.

Unfortunately, since the reporting of a preferred personal

Proceedings of the 18t Sound and Music Computing Conference, June 20th_ July 15t 2021

setup was optional, only 12 answers were collected, not
enough to perform a clustering. Nevertheless, it is interest-
ing to see that all answers were unique, reporting different
combinations of preferences.

Concerning the preferred style of settings, the need of
only one preset to be “set and forget” has been chosen 5
times, the need for fine tuning each session has been cho-
sen 5 times, and the need for a finite set of custom presets
13 times, thus being the most desirable scenario.

Among free user comments, it is worth mentioning the
request to be able to select the first song for the playlist.
This aspect, already considered in the discussed version of
Ruffle, will be soon implemented in the online prototype,
too.

Other remarks concerned control values: between 0 and
0.5, they have been perceived as not very useful, and diffi-
cult to discern, while they become more significant in the
upper part of the scale. In this case, an exponential pa-
rameter control may solve the issue: the lower part would
be compressed in less space, leaving the upper part more
sensitive to changes. In terms of GUIL, if the parameter is
interpreted as the “amount of homogeneity”, a slider in the
upper bound position recalls steadiness, while randomness
is expected to be closer to the lower bound (with the mid
position being considered a midpoint between randomness
and steadiness).

6. CONCLUSIONS AND FUTURE WORKS

This paper presented a novel algorithm to shuffle music
playlists by giving the user the possibility to configure the
dimensions to consider in the calculation of pieces simi-
larity. On each dimension, feature values can be ignored
(thus not influencing the process), be distanced as much as
possible, or conversely act as piece aggregators.

In order to let the reader test the algorithm, a solution
publicly available via web has been released. Such a
framework, working on Spotify personal playlists, is avail-
ableathttp://ruffle.lim.di.unimi.it/.

Concerning future work, we are planning to perform a
fine tuning of the formulas employed for scalar values such
as year, tempo, etc. Besides, we aim to implement some
features that may improve user’s experience, such as the
possibility to set the size of the generated playlist (e.g., a
shuffled list made of n songs or lasting m minutes).

7. REFERENCES

[1] M. G. Quifiones, “Listening in shuffle mode,” Lied und
populdire Kultur/Song and Popular Culture, pp. 11-22,
2007.

[2] T. W. Leong, F. Vetere, and S. Howard, “The serendip-
ity shuffle,” in Proceedings of the 17th Australia con-
ference on Computer-Human Interaction: Citizens On-
line: Considerations for Today and the Future, 2005,
pp. 1-4.

[3] D. Powers, “Lost in the shuffle: Technology, history,
and the idea of musical randomness,” Critical studies

(4]

(1

(6]

[7]

(8]

(91

(10]

(1]

[12]

[13]

(14]

[15]

[16]

[17]

214

in media communication, vol. 31, no. 3, pp. 244-264,
2014.

K. R. M. Sanfilippo, N. Spiro, M. Molina-Solana, and
A. Lamont, “Do the shuffle: Exploring reasons for
music listening through shuffled play,” PLOS ONE,
vol. 15, no. 2, pp. 1-21, 02 2020. [Online]. Available:
https://doi.org/10.1371/journal.pone.0228457

M. Bar-Hillel and W. A. Wagenaar, “The perception
of randomness,” Advances in applied mathematics,
vol. 12, no. 4, pp. 428-454, 1991.

R. Croson and J. Sundali, “The gambler’s fallacy and
the hot hand: Empirical data from casinos,” The Jour-
nal of Risk and Uncertainty, 2005.

G. Smith, Standard deviations: Flawed assumptions,
tortured data, and other ways to lie with statistics.
Abrams, 2014.

0. Celma, Music recommendation and discovery.
Springer, 2010.

R. A. Fisher and F. Yates, Statistical tables: For bi-
ological, agricultural and medical research. Oliver
and Boyd, 1938.

R. Durstenfeld, “Algorithm 235: random permutation,”
Communications of the ACM, vol. 7, no. 7, p. 420,
1964.

D. Knuth, “Seminumerical algorithms,” The art of
computer programming, vol. 2, 1981.

G. P, G. Gupta, S. H, S. Naseera, A. A. Siddiqui, G. G,
G. B. Amali, and S. Gonjari, “Music playlist man-
ager using fisher-yates shuffling algorithm and sort-
ing,” World Wide Journal of Multidisciplinary Re-
search and Development, 2017.

M. Fiedler, “The art of shuffling music,” http://keyj.
emphy.de/balanced-shuffle/, 2007, online; accessed 11
March 2021.

P. Singh, A. Batheja, and A. Chowdhury, “Predic-
tive music shuffling algorithm,” International Journal
of Computer Science and Information Technologies,

vol. 6, 2015.

R.-H. Liang and Z.-S. Liu, “Towards responsive music
shuffling,” https://www.researchgate.net/publication/
228789429 _Towards_Responsive_Music_Shuffling,
accessed: 2020-10-14.

L. Polacek, “How to shuffle
https://engineering.atspotify.com/2014/02/28/
how-to-shuffle-songs/, 2014, online; accessed 11
March 2021.

songs?”

M. Castelluccio, “The music genome project,” Strate-
gic Finance, pp. 57-59, 2006.

