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ABSTRACT 2. IMPACT MODEL

A physically-based impact model — already known and exploited The Hunt-Crossley impact model [6] is described by the following
in the field of sound synthesis — is studied using both analytical non-linear equation

tools and numerical simulations. It is shown that, for some regions ka® + Aa®v = kz® - (1 + po) >0
of the parameter space, the trajectories of discretized systems may f(z,v) = { 0 ' 2 <0
drift from analytically-derived curves. Some methods, based on ' - o)

enforcing numerical energy consistency, are suggested to improvg, here: is the compr

i, . : ession, v = & is the compression velocity,
the accuracy and stability of discrete-time systems.

a > 1 is theexponent of a power law and represents the local
shape of contact surfacédsjs thestiffness coefficient, 0 < A < k&

is thedamping coefficient, andy = A/k is a mathematically con-
venient term. The model above represents a non-linear spring of
constantt in parallel with a non-linear damper of constantin-
Physical models of impacts between objects are ubiquitous in manygeed, 12> represents the elastic component, while®v repre-
areas of science and engineering, including robotics, haptics, com-sents the dissipation due to internal friction.

puter graphics [1], acoustics [2] and sound synthesis [3]. The  \arhefka and Orin [7] made use of the Hunt-Crossley model
energetically-consistent and phenomenologically-plausible behav-in order to represent the impact between a lumped point-mass and
ior of contacting bodies is especially crucial in simulations of in- 5 rigid wall (representing a comparatively massive surface which
teractions based on sustained and repeated impacts, as in rollinggoes not move during collision), therefore considering the system

1. INTRODUCTION

scraping, or bouncing. described by the equation
The classic starting point is the Hertz model of collision be- -~ 9
tween two spheres, which can be extended to include internal vis- ma(t) = —f(z(t), v(?)), @

cosity [4]. The restitution force in such model is the sum of a wherem is the mass, and is the mass acceleration. In this very
nonlinear elastic term —in the form of a power law of compression basic case, while the impact interaction lasts, the compression and
— and a dissipative component proportional — via a second powerthe compression velocity are respectively equivalent to the dis-
law of compression — to the compression velocity. The exponentsplacement and the velocity of the point-mass.
of the two power laws, as derived for two colliding balls, aye
and1/2, respectively [5]. 2.1. Propertiesand analytical results
The model by Hunt and Crossley [6, 7, 8, 9, 10], which is .
described in section 2, generalizes the extended Hertz model byThanks to the simple form of (2), the model can be treated ana-
considering a variable exponent that accounts for different contactlytically and some of its properties can be inferred. Hereafter we
shapes. However, the power laws in the elastic and dissipativeconsider as initial conditions(0) = 0 and:(0) = vin, that is to
term were considered to be equal, thus allowing easier closed-formSaY that the point-mass hits the rigid wall with velocity at time
calculations (in this regard see also Pust and Peterka [11]). t=0.
In the context of musical acoustics, Stulov proposed a piano
hammer model including the relaxation properties of felt [12]. Such ~ 2.1.1. Displacement / Compression
model has exponentsanda—1 for the power laws, and the actual
value ofa can be used to match experimental data. .
Other models exist that take plastic deformations into account, m(a+ 1) 1+ pv oI
thus introducing abrupt direction changes in the force-compression o(v) = { ku? ' (7“(0 — vn) + log 1+ pvin )}
curves at the transition between loading and unloading [13]. 3)

It is shown in [7] that from (2) follows
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which can be exploited for plotting the phase portrait on(the)

plane of figure 1. As figure 1 shows, due to viscous dissipation

(represented by or i), the velocity after collisiony is always

smaller in magnitude than the corresponding Moreover, for

increasinguin, vout cONverges to the limit valuein. The linev =

vim represents the trajectory where the elastic and dissipative terms

cancel, and separates two regions of the phase space, each of whic

is never entered by trajectories started in the other. 05
It can be noted that (3) allows to infer th&ximum compres-

sion experienced during the impact interaction, which occurs when 0

=
2
T

Error (%)

i
T

the compression velocity equals zero. kot 0, equation (3) be- : 7w, fadimg
comes
m(a +1) =T Figure 3: Percentage error introduced by (7) and (8).
Tmax = ‘L(O) ="z (/L'Uin + lOg Pa— .
ku 1+ poin
4

As remarked by Marhefka and Orin [7], equation (1) together ) o
with figure 1 show that the forcg becomes sticky (inward) when ~ Of xvin only. However, analytical derivation of the dependence
N . o . E(uvin) have been classically performed in the limit of small ini-
v < uim = —1/p. However there is no physical inconsistency

. m e M - : tial velocities and/or small dissipation [6].

in this “stickiness” property, and indeed this never occurs for a

trajectory with initial conditionsz(0) = 0 andz(0) = vin. A non-local approximation fope,: can be empirically deter-
Finally, by substituting (3) in (2) it is possible to plot the mined by fitting the curve? (pvin) in the two limit regionguvin —

compression-force characteristics during collision, which is shown 0 anduvin — oo, giving

in figure 2. It can be noted that the dissipative texmf*v intro-

duces hysteresis around the cukue”.

2.1.2. Output velocity Vour( {4, Vin) = Viim {1 - (Z bj -vfg) 62‘“"”} . (D
j=0

Therestitution coefficient £ is defined as

A | Vout . _

E=1-| (5) where, in the case = 4, the coefficient$, are
n

In this connection a remark can be madg:andwvo,: correspond
to the roots of the right-hand side of (3), that is the points where 2 5 2 3 14 4
x = 0. As a resultpo, can be defined implicitly from (3) as bo=1, bi=p, by=gpu’, bs=gp’, ba= T

®)

Figure 3 shows the error introduced by (7) for= 4 and
wherewvoy is defined as a function dfu, vin). This implies that the coefficients (8), when compared to the corresponding value
Lwout 1S @ function ofuwvin only, and thereford” is also a function computed numerically as a zero of (6).

#out — log |1 + pvou| = p1vin — log |1 + p1vin| (6)
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2.1.3. Contact time From (12) and (14), and recalling tpenciple of conservation

. . . of energy, it follows that at each time instant
Itis shown in [14] that the contact time can be expressed as ay

m %ﬂ uz ﬁ V(t) + T(t) + A(t) = Ho (15)
TZ(?) Na+1 ' = H(t) = Ho — A1)
./Ui" 1 . ©) Moreover from (15) follows that, at every time instanthe
vou (1 4 pw) [—M(U — i) + log 11++;ﬁ;}n } atT overall variation of energy is:
AH(t) = H(t) — Ho = —A(t), (16)

Equation (9) states that the contact timdepends only op, the

exponenty, and the ration/k, plus obviously the impact velocity

vin. Since neithern nor k affect the value of the integral (recall

thatveu: depends only om anduwin), it follows that, given a fixed

vin, the power-law dependenee~ (m/k)'/(¢+1) holds. AH. — o — Hoe —A an
From an auditory point of view, the value of the contact time is T 0T h

strongly correlated to the perceived “hardness” of the impact [14]. \yherer indicates the instant when the impact ends, Ahds the

Namely, as the contact time decreases, the perceived hardness i 4| Hamiltonian of the system, that is the energy content after the
creases. Recalling the power-law dependence above and (1) it f°|‘|mpact interaction has ended, which equals:
lows that, for a fixed mass:, “hard” and “soft” impacts corre-

spond respectively to high and low force values. 2
H, =T, = m;(’“t. (18)

and therefore the total amount of energy dissipation occurred dur-
ing the impact interaction is

2.1.4. Energy properties and behavior
It can be noted thah H - corresponds to the area enclosed by the
The energy variation in a mechanical system can be calculated asysteresis loops represented in figure 2.

the work made by the overall forgeacting on the system along a As a last remark, from the results above it clearly follows that

certain pathe; — xo:

e ta 0< H(t+dt) < H(t). (19)
AH = / f(z)dx = / F)v(t) dt (10)

o “ 3. NUMERICAL SIMULATIONS

where H is the total energy content, known as tHamiltonian,

and the second integral is obtained by considering thaind ¢, In this section, the continuous-time system described by (2) is dis-

correspond respectively to the instants when the displacements cretized by means of several numerical methods, and the resulting

andz; are reached. The Hamiltonia is the sum of potential  numerical systems are studied.

and kinetic energies (hamédandT’, respectively):

H(t) =V(t) + T(t). (11) 3.1. Remarkson accuracy and stability
With regard to the system represented by [R)is related to All numerical systems can simulate their continuous-time coun-

the dynamics of the point-mass, which is described by the left- terparts only to some extent. Generally speaking, one of the basic
hand side of (2), whild” is related to the elastic component of the reasons for this inherent limit is that the discretized variables de-

impact force given in (1). pend on the chosesample rate F’s, and therefore the behavior of
More specifically, and in agreement with the last integral in (10),any humerical method is bounded by it.
multiplying both sides of (2) by(t) = dz/dt and time-integrating For instance, since our numerical system takes as input the ini-
them, gives tial velocity vin of the point-mass, the compressiorcan only be
. i . computed as a function (integral) of. It is clear that, much as
/ ma(t)v(t) dt = ,/ kx(t)“v(t) dt—/ Az(t)v(t)? dt good a numerical method can be, the highgrand/or the lower
F (i.e., less samples are available for computing the numerical
() Vit AGt) integral) are, the less precisés. In any case, the computed com-
(12) pression islways an approximate value.

where the force expression given in (1) has been considered in  Besides, the resulting impact forgas obviously affected too,
the caser > 0 only, andA(t) is the work made by the dissipa- and as the impact “hardness” increases, the computation error in-

tive component of the impact force. The integrlé) and7'() creases as well. From a more general perspective, those inconsis-
in (12) can be solved explicitly, giving tencies are reflected in the energy behavior of the numerical sys-
i1 ) tem: for example, it is evident that inconsistently large compres-
V(t) = ka(t) ) = mu(t) ) (13) sions cause the force, the output velocity, and therefore the energy,
a+1 "’ 2 to increase inconsistently with the continuous-time system.

Apart from the intrinsic numerical bounds pointed above, it
must be noted that different numerical methods behave differently,
and thatll of them are susceptible to problems related to stability.

Now consider a system where the point-mass travels with ve-
locity vin before the impact occurs, then the initial Hamiltonian
corresponds to the initial kinetic energy and is

mv% it is clear that, while the dependence on the impact velocity has a

Ho=To = - (14) physical meaning, the dependence on the sample rate has not.
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For instance, for some values of parameters, one method could dis- It should be noted that this algorithm assumes jfat; only
sipate too much energy, while another one could violate the prin- depends on the predicted velocﬁ;{+%, which clearly gives rise
ciple of passivity, thus generating spurious energy. In both casestg inaccuracies.
those inconsistencies - besides the fact of resulting in an erroneous
state of the system - could give birth to instabilities. 3.2.3. Heun

Even though some stability conditions can be derived for LTI
systems, those do not extend to the case of non-linear systems. In The Heun method [15] is a predictor-corrector explicit method,
the latter case one possibility is to exploit energy-based methodswith the forward Euler method as predictor and the trapezoidal
(see for example [16] in the context of physical modeling sound rule as corrector. It can also be seen @n@order Runge-Kutta

synthesis). method (RK2).
Discretizing (2) results in the following implementation scheme:
3.2. Numerical methods fn )
Unt1 = vn +h—, predictor
Hereafter, the continuous-time system of (2) is discretized using m
different numerical methods. Following the standard notation in Tnpl = Tn + ﬁ(vn + Tng1)
numerical mathematics, the integration step is a constant named 2 (22)
fn+1 = f (xn+171~)n+1) )
3.2.1. 1-step Adams-Moulton Vi = vn + gfn + fnt1 . corrector.
The 1-step Adams-Moulton (AM1) [15] is a A-stable 2nd-order o m
implicit method, also known asilinear transformation, or trape- Again, it should be noted that both, 11 and f,1 only de-
zoidal rule. pend on the predicted velocity, 1, and this gives rise to inaccu-

Discretizing the equation of motion (left-hand side of (2)) re- racies.

sults in the following state-space form equation:
Tn+1 _ 1 h Tn Im . Lo .
{ Unin } = { 0 1 { o, ]4’{ i } [fnt1+fn]- (20)  The 4th-order Runge-Kutta [15] is an explicit iterative method
2m which is widely used to solve ODEs with improved accuracy.
where the expression for the discrete-time force can be obtained by ~ Discretizing (2) results in the following implementation scheme:
replacing the continuous-time variable§) andv(t) in (1) with

2 3.2.4. 4th-order Runge-Kutta

their discrete-time counterparts. Tpt1 = Tn + %(11 + 2ly + 213 + 14)
Since the AM1 method is implicit, (20) is also in implicit 1 (23a)
form and this is reflected in the instantaneous relationship between Unt1 = Un + — (k1 + 2ke + 2ks + ka)

[€ni1 vni1]T and f,41. Unfortunately, sincef,,.1 also has an 6

instantaneous dependence ;1 and v.+1, the discrete-time ~ Where

counterpart of the system described by (2) contains a delay-freel — I I = h(vn + @)

loop, which is not directly computable and — because of the in- o R

cluded non-linearities — needs some special handling in order to ko

be solved. In particular, thie-method [17] together withNewton's ls = h(on + ), la = h(vn +ks)

method [15] are used, weighing on the efficiency of the simulation. Flen + %’ v+ %1)

m

klzhf—", ko =nh
m

3.2.2. VelocityVerIet f(iﬂn + %,Uﬂ, + ]%2)
The Verlet method [18] is a 2nd-order explicit method which is ks = h m » m
commonly used in computer graphics [1], video games, and molec- (23b)
ular dynamics simulation. Its main application is that of integrat-
ing Newton'’s equation of motion in order to describe the trajectory
of moving particles. The one used here is a variant caigbatity
\erlet, which provides better handling of the velocity variable and
can be seen as a predictor-corrector method. .
Discretizing the system represented in (2), results in the fol- 33 Experimental results

_ hf($n+lduvn+k3)

It should be noted that, for each sample, both the velocity and
the non-linear force given in (1) need to be evaluated four times,
therefore affecting the efficiency of the simulation.

lowing implementation scheme: In order to evaluate the chosen numerical methods, it is useful to
h2 f compare the behavior of the corresponding simulations against the
Tpil = Tp + Ao, + El known analytical results (cfr. section 2.1).
m In particular, several plots are provided which show: the phase
Vi1 =Un + ﬁ&’ predictor portrait on the(m, v) _plane (cfr. figure 1), }he com_pression-fprce
2 2m (21) characteristic (cfr. figure 2) and, in the discrete-time domain, the
fotr = f@nt1,0,0 1), impact forcef and the Hamiltoniard .
h frit The f_oIIowirjg values of parameters are kept constant thr_ough-
Unt1 =V, 1+ 2 m corrector. out the simulationsm = 1072 kg, andF, = 44.1 kHz, that is
a standard audio sample rate. The considered integratior ssep
2Consider, for example, the von Neumann analysis [15]. therefore equal ta/Fs.
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3.3.1. Reference simulations: Soft impact

of the 12" Int. Conference on Digital Audio Effects (DAFx-09), Como, Italy, September 1-4, 2009

3.3.2. General study

It can be observed that for hard impacts (that is when the contact
time lasts only a few samples) and/or whem, — 0, the energy
behavior of some numerical implementations becomes inconsis-
tent with the continuous-time system.

The main reference used to qualitatively and/or quantitatively
assess the reliability of a particular numerical method is the en-
ergy behavior of the corresponding simulation. In particular, the
following condition

H,+1 < H,, foralln (24)
should be satisfied (see (19)). Other indicators are provided by
the analytical values of maximum compressiamx and output
velocity vou, Which should never be exceeded.

It is found empirically that whem < 4 samples, the percent-
age errors quickly increase, and the reliability of all the simulations
is poor. Hence, for the sake of clarity, in the study hereafter only
values of parameters resultingin> 4 samples are considered.

Case 1l pvin — 04

Even in case of “not-too-hard” impaéisthe Hamiltonian of
both Verlet- and Heun-discretized systems is prone to oscillations,
and the system generally results in an inconsistent final energy
state (typically, HYe"e:Heun ~ 7). Moreover, as put forward
in section 3.1, for hard impacts (highand/or lowa) the maxi-
mum compression is often higher than the analytical valug.
As for AM1-discretized systems, these generally tend to dissi-
pate too much energy during the compression phase, while gain-
ing spurious energy during the decompression phase{h¥! >
H:). On the other hand, RK4-discretized systems generally be-
have quite consistently (i.¢7°¢ ~ H.).

Figure 5 shows an example simulation of hard impact (contact
time =8 samples) withuwvin = 0.03, while table 1(a) shows the
corresponding percentage errors.

Case 2: hard impacts with average or high valuesef,
During the impact interaction, all the simulations usually re-

In order to verify the simulations and provide a reference, the gt in a sufficiently consistent time evolution of the Hamiltonian:

model's parameters are set to a “soft” configuration where the im- the condition (24) is generally satisfied, except for the end of the
pact interaction extends over many samples, so that the numericajteraction.

systems operate in a safe space and should therefore behave very  a¢ this stage, the two 2nd-order explicit methods typically tend

similarly to the original continuous-time system. to introduce spurious energy (i7" Hetn < 7 ) Concern-
This is confirmed by figure 4, where the plots of all the simula- ing AM1-discretized systems, these tend to behave better than the

tions substantially overlap. In particular, it is possible to check the two methods mentioned above, even if sometifiéd"* > H..

accuracy of the simulations against the analytical results pl’OVidedAgain, RK4-discretized sys’[ems genera”y behave rather consis-

in section 2.1: figure 4(a) displays the phase portrait or{the) tently, and only experience small discrepancies from the analytical

plane and, as tangent lines, the maximum compressignand results (i.eaRfe ~ zmaxand HX ~ H..).

the output velocityvou, while in figure 4(b) two horizontal lines A second hard impact example simulation is provided, follow-

display Ho = Tp andH, = T, that is respectively the initial and  jng the values of parameters adopted in figure Lifor= 1 m/s

the final Hamiltonian. (uwin = 0.5), while table 1(b) shows the corresponding percentage
Figure 4(b) also allows to understand the energy behavior of errors. The resulting contact timeequalss samples.

the system: the sinusoid-like curves represent the kinetic energy

T (curve starting at{o = Tp) and the elastic potential energy From the simulations above it is clear that the percentage er-

(curve starting ad). The sum of the potential and kinetic energies ror is not strictly correlated to the impact hardness (that is, the

provides the upper staircase-like curve representing the Hamilto-duration in samples of the contact interaction). Moreover, the non-

nian H, which indeed decreasesntil H. = T in correspon- [inearities of the impact model described by (1) make it difficult to

dence to the end of the contact interaction. predict the exact behavior of the corresponding numerical system,

especially with lower-order explicit methods.

SWheny = 0 the overall energy remains constant, thaklis= Hy =
Hr.

“4e.g., when the contact time lasts tens of samples
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Figure 5: Hard impact example followirgase 1: Comparison of
different numerical methods. The values of parameterscare

107 N/m®, 4 = 0.1 s/m,a = 1.1, vin = 0.3 m/s. The contact
time equals3 samples.

4. IMPROVED NUMERICAL SIMULATIONS

4.1. Contact sound models

Contact models borrowed from different application fields can serve

as a basis for developing models of acoustic phenomena. As al
example, in the context of physical sound modeling, the impact

model described by (2) has already been used to develop an im

pact sound model [3], namely by substituting the rigid wall com-
ponent with a generic resonating object. Also, other models of

Conference on Digital Audio Effects (DAFx-09), Como, Italy, September 1-4, 2009
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Figure 6: Hard impact example followingase 2: Comparison

of different numerical methods. The values of parameters are the
same as in figure 1 withi, = 1 m/s. The contact time equals
samples.

on a surface has been modeled as a dense temporal sequence of
micro-impacts driven by the geometry of the contacting surfaces
and modulated by the ball's asymmetry.

From these application examples it is clear that, even if the er-
rors are generally tolerably sniafbr single impact events, in case
of sustained contacts or multiple impacts the energy state of the

r"system can become strongly inconsistent. This is a known issue

also in computer graphics, where the constraint of low frame rates

‘makes numerical systems prone to instabilities [1]. An example is

that of a steady object in sustained contact with a rigid floor: when

the system does not retain passivity, the object can move upward
¥nd bounce. Similar issues are encountered in simulation of haptic
contact, where stiffness values are usually limited by requirements

bn system passivity [21], whereas higher values can cause the sys-

force, which simulates gravity, on a plain impact sound model. tem to become unstable, i.e., to oscillate uncontrollably.

Moreover, aolling sound model [20] has been developed by driv-
ing an impact sound model by means of a sophisticated control  Sgspecially ifr > 4 samples, and when using implicit or high-order
layer. More precisely, the continuous interaction of a ball rolling numerical methods.
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(a) Simulation example followingase 1. The values of parameters are the
same as in figure 5.

Y%err AM1 Verlet Heun RK4 num. res.
Tmax n.e. +1.122 | +1.254 n.e. -
Vout +1.293 | +1.660 | +1.467 | —0.125 | ~ —107?
Higu || +2.603 | +3.348 | +2.955 | —0.250 -
(b) Simulation example followingase 2. The values of parameters are the
same as in figure 1 far, = 1 m/s.
%err AM1 Verlet Heun RK4 num. res.
Tmax n.e. n.e. n.e. n.e. -
Vout +2.551 | +0.839 | —4.692 | —0.105 | ~ —107*
Hiqw || +5.166 | +1.685 | —9.164 | —0.211 -

Table 1: Summary of percentage errors for two hard-impact exam-

ple simulations. The caption “n.e.” stands for “not exceeded”. The
last column shows the error resulting from comparing the approxi-
mate valueyt, which is obtained from (7) and (8), against a value
computed numerically as a zero of (6) (cfr. figure 3).

4.2. Exploitation of analytical results

In this section, some solutions are proposed to partially fix the
inconsistencies pointed out in section 3.3. The aim is to improve
the reliability of simulations which use the impact model under
study, in view of their implementation as real-time applications.
As written above, in order for the numerical systems to behave
consistently, the energy condition given in (24) must hold. More-
over, from figure 1 it can be inferred that the relatigi + dt) <
v(t) holds. This brings us to the following condition:

Unt1 < vn, foralln. (25)
However, at the time of writing no analytical result describing
the behavior of the state variableg) andv(t) over time is avail-
able, and therefore there is no easy option that allows to fix wrong
numerical values off or v during the impact interaction.
One indirect approach is to intervene on the compression, for
which the following condition must hold:

Tn < Tmax, forallmn, (26)
wherexmax IS @ constant calculated by (4). Hence the suggested
solution is that of clippinge,, to the maximum allowable value
xmax Whenever this is exceeded. This also affects the Hamiltonian
of the system by decreasing the elastic potential engrgy

An additional solution is to force the numerical output veloc-

ity to the approximate value,,: calculated by (7) and (8). As a

result, as the interaction ends the energy content of the numerical

system is restored, that is the Hamiltonian is forced/ta Since

the error introduced by the approximate valuef— even in case

of hard impacts — is generally of order lower than that of the error
introduced by the numerical simulations (cfr. table 1), the correc-
tion of vout €nsures that the physical consistency of the numerical
system is improved.

In order to implement the suggested corrections, it is neces-
sary to compute the values ofax andvou, Which are given re-
spectively by (4), and (7) plussth-order expansion for the coef-
ficientsb; (e.g., the 4th-order expansion (8)). These computations

—compression [m]

0.05

0.1 02 025 03

time [s]

Figure 8: Effect of errors when the force of gravity is applied to the
simulation example oase 1. For the sake of clarity, the sign of
the compression has been inverted, this way visually representing
the rebounds as they would occur on a horizontal floor.

4.3. Numerical simulationswith corrections

As a basic application example, the worst behaving impact simula-
tions found incase 1 and incase 2 of section 3.3.2 were corrected
using the solutions explained above. Figure 7 shows a comparison
of the simulations with and without corrections. In the corrected
simulations, the compression is limitedit@ax and the energy con-

tent is forced taH - upon the end of the interaction.

Furthermore, in order to verify the necessity of corrections
even in case of small errors, an external force was applied to the
point-mass, this way simulating a bouncing object. It is found that
when the point-mass travels with even slightly wrong velocities,
the trajectories are inaccurate, the rebounds happen at the wrong
time, energy is wrongly dissipated, and above all those errors ac-
cumulate at each impact event. Figure 8 shows the effect of small
errors in the situation pointed above, where the force of gravity
fg = mg is superimposed on the impact simulation example pro-
vided in section 3.3.2 and correspondingcése 1. Note that, in
order to stress that even small errors can strongly affect the physi-
cal consistency, only the twimest performing simulations (namely,
AM1 and RK4) are portrayed.

5. CONCLUSIONS

r'\ non-linear physical model of impact with sound synthesis ap-
plications has been reviewed, and its properties have been studied
using both analytical tools and numerical simulations.

Several numerical realizations have been compared, and their
shortcomings with regard to the corresponding analytical results
have been shown. Special emphasis has been placed on energy
consistency.

Moreover, it has been shown that by exploiting some analyt-
ical results, the inconsistencies of the numerical realizations can
be amended, thus restoring the correct energy state of the simu-
lated systems after the impact interaction has ended. On the other

only need to take place in correspondence of an impact event, anchand, an efficient way to control the energy content of the system

more precisely as soon as the impact velogityis known.

throughout the contact interaction is still needed.
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(b) Case 1. energy behavior of the Verlet-

discretized system. During the interaction, the
Hamiltonian is influenced by the correction of
z, and as the interaction ends, the velocity is
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(c) Case 2: energy behavior of the Heun-
discretized system. As the interaction ends,
the velocity is forced taout, resulting inH =
H..

forced tovout, resulting inH = H.

Figure 7: Comparison of simulations with and without corrections.
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