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Abstract: This work presents a procedure for the estimation
of a two-mass vocal fold model starting from a time-varying
target flow signal. The model is specified by a large number of
physical parameters, computed as functions of four articula-
tory parameters (three laryngeal muscle activations and sub-
glottal pressure). Flow waveforms synthesized by the model
are characterized by means of a set of typical voice source
quantification acoustic parameters. Given a sequences of tar-
get acoustic parameters, dynamic programming techniques
and interpolation based on Radial Basis Function Networks
are used to derive sequences of articulatory parameters that
lead to resynthesis of the target signal.
Keywords: Voice source, Low-dimensional models, Estimation,
Synthesis

I. I NTRODUCTION

One open problem in research on low-dimensional vocal
fold physical models is the relationship between parame-
ters of the models and acoustic parameters related to voice
quality. A recent work [1] studied the sensitivity of acoustic
flow parameters to variation of physical parameters in a
two-mass model, and provided indications of the “actions”
that the model employs to target different voice qualities.
However low-level parameters (masses, spring stiffnesses,
etc.) are not independently controlled by a speaker: more
physiologically motivated control spaces are needed. A
related issue is the “inverse problem”, i.e. the problem of
estimating the time-varying control parameters to be used
as input to the physical model in order to resynthesize a
target acoustic signal. This involves inversion of a non-
linear dynamical system with a large number of parame-
ters. Moreover the solution is in principle non-unique. A
possible solution to the non-uniqueness problem is working
on temporal sequences of acoustic frames and estimating
articulatory parameters through minimization of some cost
function that includes an “articulatory effort” component.
This approach has been applied in [2] to the solution of
the inverse problem for an articulatory vocal tract model.

This paper presents a procedure for the estimation of a
two-mass vocal fold model [3] starting from time-varying
acoustic parameters of a target flow signal. The model is
specified by a large number of low-level physical parame-
ters. An additional modeling layer computes these physical
parameters as functions of four articulatory parameters

(three activation levels of laryngeal muscles and subglottal
pressure) [4]. Glottal flow waveforms synthesized by the
model are characterized by means of a set of acoustic
parameters: fundamental frequencyF0, open quotientOQ,
speed quotientSQ, return quotientRQ, normalized ampli-
tude quotientNAQ [5], etc., that are used in the literature
as typical voice source quantification parameters [6].

Therefore there are three related but distinct spaces of
parameters: articulatory, physical, and acoustic parameters.
This work deals with the problem of mapping acoustic
into articulatory parameters. We tackle the problem by
characterizing temporal frames of glottal flow signals via
sequences of acoustic parameters, and by developing a
methodology to derive the corresponding sequences of
articulatory parameters using dynamic programming tech-
niques. The procedure is further improved by using Radial
Basis Function Networks (RBFN) to interpolate points
in the articulatory space. Results show that the physical
model controlled via the estimated parameters is able to
resynthesize target flow signal with good accuracy.

Section II describes the physical model used in this work
while Sec. III details the techniques used to estimate the
model starting from a target time-varying flow signal. Re-
sults, as well as and current limitations and shortcomings
of the proposed approach, are discussed in Sec. IV

II. T HE PHYSICAL MODEL

The analysis developed in the next sections is based on
a two-mass model presented in [3] and depicted in Fig. 1.
The model assumes in particular one-dimensional, quasi-
stationary, frictionless and incompressible flow from the
subglottal region up to a time-varyingseparation point
zs along the glottis, where flow separation and free jet
formation occurs. No pressure recovery is assumed at the
glottal exit. The separation pointzs is predicted in [3] to
occur when the glottal areaa(z) exceeds the minimum area
by a given amount (10−20%). By introducing aseparation
constant s (in the range1.1−1.2), separation occurs when
the glottal area takes the valueas = min(sa1, a2).

The vocal tract is modeled as an inertive load. In the
limit of fundamental frequencies much lower than the first
formant frequency the air column acts approximately as a
mass that is accelerated as a unit, and the vocal tract input
pressure can be written aspv(t) = Ru(t) + Iu̇(t), where
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Fig. 1. Right: schematic diagram of the vocal fold, trachea,and
supraglottal vocal tract; left: two-mass vocal fold model.

R, I are the input resistance and inertance, respectively.
Values for R, I are chosen from [7]. Being a first-order
system, this model does not account for resonances of the
vocal tract, however it describes with sufficient accuracy its
most relevant effects on vocal fold oscillation, in particular
the lowering of the oscillation threshold pressure [7].

Low-level physical parameters (masses, spring stiff-
nesses, etc.) are not independently controlled by a speaker:
more physiologically motivated control spaces are needed,
which requires to establish a mapping between physiology
(muscle activations) and physics (parameters of the two-
mass model). A set of empirical rules, derived from [8],
was used in [4] for controlling a two-mass physical model.
The rules link vocal fold geometry to activation levels of
three muscles: cricothyroid (aCT ), thyroarytenoid (aTA)
and lateral cricoarytenoid (aLC). These levels are assumed
to be normalized in the[0, 1] range. In addition, in this
paper we also consider the subglottal pressureps. In
conclusion, the physical model is completely controlled by
the set of fourarticulatory parameters aCT , aTA, aLC , ps.

III. M ODEL ESTIMATION

A. An articulatory codebook

The first step of the estimation procedure is to define
and populate adirect codebook, in which every vector of
articulatory parametersaCT , aTA, aLC , ps is a “key” and is
associated with one and only one vector of acoustic param-
eters. To this aim, a large number of numerical simulations
of the two-mass model is run on a dense grid of vectors of
acoustic parameters. For each simulation, relevant acoustic
parameters are extracted from the synthesized glottal flow
signal using the APARAT toolkit [9].
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Fig. 2. Distribution of acoustic parameters in the direct codebook.

The direct codebook used in this work has been derived
on a grid whereaCT andaTA vary in the range0÷1 with
a fixed step of0.05, while the range foraLC is 0.25÷ 0.5
with a fixed step of0.025 (because sustained phonation
only occurs within this region), andps varies in the range
500 ÷ 1500 Pa with a fixed step of50 Pa. The resulting
codebook contains86125 vector pairs. Fig. 2 shows the
distribution of the 7 computed acoustic parameters in the
direct codebook.

B. Codebook inversion and dynamic codebook access

In order to solve the inverse problem, the direct code-
book has to be inverted to obtain theinverse codebook.
This however suffers from a non-uniqueness problem,
i.e. an acoustic vector can be the key to one ormore
articulatory vectors. We tackle the problem by working
on temporalsequences of acoustic vectors, rather than on
a single vector. These may be obtained e.g. by analyzing a
time-varying glottal flow signal on a frame-by-frame basis.
Given a sequence of acoustic vectorsxk we want to obtain
an “optimal” sequence of articulatory vectorsvj

k in the
inverse codebook: as already explained,xk is in principle
associated with many candidate vectorsv

j
k because of the

non-uniqueness problem. In particular we perform a search
in the acoustic space of the inverse codebook to find the
nearest vectors (according to the euclidean distance) to
the givenxk; the v

j
k are therefore the articulatory vectors

associated to these nearest vectors in the codebook.
The optimal sequence of articulatory parameters is ob-

tained by minimizing acost function with three terms. An
acoustic term accounts for the euclidean distance between
xk and its discretized versions in the acoustic space of the



codebook (the vectors found by the search). Anarticula-
tory term minimizes the euclidean distance betweenv

j
k and

v
j
k−1

, i.e. between every two articulatory vectorsconsecu-
tive in time. This is the key term in the procedure, in order
to obtain smooth parameter variations: it minimizes the
“articulatory effort”, in accordance with the physiological
muscle behavior. Anaccumulation term extends the cost
function domain to the entire input sequence, so that the
obtained articulatory sequence is optimal in a global way.
The (simplified) cost function is:

f(vj
k) = min

γ,δ
[τ1||xk − cδ

k||
2 + τ2||v

j
k − v

γ
k−1

||2 + f(vγ
k−1

)]

where τ1,2 are weights for the acoustic and articulatory
terms, respectively;cδ

k are the discretized acoustic vectors
close to xk. Dynamic programming techniques are the
ideal tool for the minimization of the cost function: in
particular the accumulation term would lead to exponential
complexity, if not computed with this approach.

C. Codebook clustering and interpolation with RBFNs

One problem in the proposed procedure is that a target
vectorxk is typically not present in the inverse codebook,
which is discrete; therefore every foundv

j
k is not associated

with xk, but only with a vector near toxk. The limitations
of the discrete codebook can be overcome by interpolating
the articulatory space; this allows to compute articulatory
vectors associated exactly to the givenxk.

The interpolation uses RBFNs (Radial Basis Function
Networks) [10]. Since RBFNs only interpolate functions
and cannot handle multimaps, the inverse codebook has to
be manipulated and the non-uniqueness problem avoided.
We have developed a novel algorithm that subdivides the
codebook in acoustic clusters and articulatory subclusters.
Every cluster is associated to one or more subclusters. The
algorithm guarantees that for every acoustic vector in a
given cluster there will be only one (or none) articulatory
vector in each associated subcluster. As a result in every
subcluster the subdivided codebook provides a unique
mapping, which is needed for RBFNs to work properly.

The algorithm first subdivides the acoustic space in
clustersCi using a standard technique. Random vectors,
as many as the desired clusters, are generated and subse-
quently moved with an iterative procedure [11] to become
centroids. Centroids are iteratively displaced in such a
way that the sum of the distances between every centroid
and the associated vectors is minimized. ClustersCi are
built by associating every acoustic vector with the nearest
centroid. In order to obtain a uniform distribution of
vectors in every cluster, the iterative procedure is applied in
a two-stage fashion. Moreover, in order to ensure a certain
degree of overlapping, the vectors which are closest to
boundaries between two clusters are replicated in both.

Once the acoustic clustersCi are built, the algorithm
determines thes articulatory subclustersSi

j (j = 1 . . . s)

associated to eachCi. Heres equals the maximum number
of articulatory vectors associated to the same acoustic
vectorx∗ in Ci. Every articulatory vector associated with
x∗ is assigned to a distinct subcluster and used as a “seed”.
The remaining articulatory vectors are allocated as follows.
When many articulatory vectorsvj

k are associated to the
same acoustic vectorxk, everyv

j
k is assigned to a different

subcluster, chosen as the one with the nearestarticulatory
centroid. The location of the subcluster centroid is updated
after every new vector is added.

Having determined the clustersCi, each associated with
one or more subclustersSi

j , within everySi
j we construct

four different RBFNs to interpolate each dimension of
the articulatory space. Every acoustic vector associated to
the subcluster is used as center for one RBF (gaussian
functions in our application). Values for the parameters of
the functions (standard deviation, etc.) are found after an
extensive set of experiments on the codebook. After the
determination of all the RBFNs, the articulatory space can
be interpolated. The following procedure is used to feed the
dynamic programming with interpolated vectors. Given an
acoustic vector we find thek nearest acoustic clusters and
all the associated subclusters. The acoustic vector is used
as input for the set of RBFNs in each subcluster. Finally,
all the computed interpolated articulatory vector (as many
as the subclusters) are passed to the dynamic programming
procedures, which proceeds with the optimization.

IV. RESULTS AND DISCUSSION

The proposed algorithms were initially tested and tuned
using artificial target sequences of acoustic vectors. These
were used as input to the system to obtain the correspond-
ing articulatory parameters. Results from these preliminary
tests provided two main indications. First, the synthetic
signals obtained by driving the physical model with the
derived articulatory parameters follow closely the target
acoustic vectors. Second, the derived muscular activations
and subglottal pressure have physiologically plausible evo-
lutions, i.e. they have smooth variations in time. These
initial results confirm the validity of the employed cost
function, and of the RBFN interpolation.

In order to test the proposed algorithms on real sig-
nals, we have realized a completesynthesis-by-analysis
procedure. Starting from a recorded utterance (a sustained
vowel with varying pitch and voice quality) the signal is
inverse filtered with APARAT. The estimated glottal flow
is analyzed frame-by-frame and a sequence of acoustic
vectors is obtained. The corresponding articulatory vectors
(derived using the techniques described in Se. III) are used
to drive the physical model, and the resynthesized glottal
flow is convolved with the time-varying formant filter of
the vocal tract. The final result is a resynthesis of the
utterance, in which the evolution of pitch and voice quality
are close to those of the original signal.
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Fig. 3. Example of the analysis-by-synthesis procedure. (a) Time sequences of articulatory parameters retrieved by the optimization procedure (solid
line: no RBFNs; dashed line: RBFNs). (b) Time sequences of glottal flow acoustic parameters (dotted line: target sequences extracted from a recorded
utterance; solid line: resynthesis without RBFNs; dashed line: resynthesis with RBFNs).

Fig. 3 shows the performance of the synthesis-by-
analysis procedure on a real utterance (a sustained /e/). The
time-varying acoustic vectors obtained in the resynthesis
follow with good accuracy the target ones, and informal
listening tests confirm that the resynthesis is qualitatively
similar to the target signal. In particular the NAQ is usually
well followed, as shown in Fig. 3(b). This is a positive
result as the NAQ is known to be strongly related to voice
quality [5]. The effect of using RBFNs can be noticed
in Fig. 3(a): the sequences of articulatory vectors interpo-
lated by RBFNs are smoother than those obtained using
bare dynamic programming. A second advantage of using
RBFNs is that the amount of vectors that feeds the dynamic
programming procedure is significantly reduced and this
leads to a corresponding decrease in the computation time.

While the results reported in this work indicated that the
proposed approach is effective in estimating control pa-
rameters of the physical model, both with synthetic target
data and with real utterances, a number of limitations are
still hindering the performance of the estimation procedure
described in this work. These are mainly related to intrinsic
limitations of the two-mass model. Ranges of variation for
the acoustic parameters are generally narrow (see Fig. 2),
and are sometimes non realistic. RQ and NAQ in particular
assumes exceedingly low values, due to poor description of
the flow at small glottal apertures, which results in abrupt
glottal closure and exceedingly high absolute values of the
flow derivative peak. The relationship between physical
parameters of the models and acoustic parameters also
need to be assessed: as an example, the relation between
ps andF0 observed in the model is not in accordance with
results reported in the literature. Finally, a more systematic
approach to the determination of RBFNs parameters is

needed in order to fully exploit the benefits of interpolation
in the codebook.
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