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Computation of Delay-Free Nonlinear Digital Filter
Networks: Application to Chaotic Circuits and

Intracellular Signal Transduction
Federico Fontana, Member, IEEE, and Federico Avanzini

Abstract—A method for the computation of nonlinear dig-
ital filter networks containing delay-free loops is proposed. By
preserving the topology of the network this method permits the
inspection of all signals flowing across the loops. Furthermore, it
enables to discretize analog filter networks described by nonlinear
ordinary differential equation systems on a block-by-block basis,
in such a way that ad hoc analog-to-digital maps can be individ-
ually applied to each filter. A nonlinear implicit system must be
solved at every computation step using iterative methods, holding
certain sufficient conditions for the existence of the solution. This
condition is in algebraic relationship with the causality and struc-
ture of the network and its filtering blocks. The proposed method
can be straightforwardly applied to the computation of several
interconnected networks. This property adds modularity to the
procedure, and enables to handle changes in the network topology.
Examples are presented showing the applicability of the method
to the computation of the Chua–Felderhoff RLC circuit and to the
dynamic simulation of a known intracellular signal transduction
model of circadian cycles in Drosophila melanogaster.

Index Terms—Biological system modeling, circuit modeling,
delay effects, digital filters, nonlinear systems.

I. INTRODUCTION

A continuous dynamic system which is mathematically
described by a set of autonomous ordinary differential

equations (ODEs) can be modeled as a network of smaller
system blocks that exchange signals instantaneously. The
networked perspective becomes attractive when it reflects the
physical structure of the system and helps preserve its local
properties. Examples of system networks are found in appli-
cation fields ranging from traditional electronic engineering to
the emerging field of computational biology, which often deals
with networks that connect systems admitting an ODE-based
description in terms of rate equations [1], [2].

In general, it is not true that a system network can be in-
spected using efficient numerical integrations, which decouple
the computations across blocks: if the responses of two or more
blocks depend on each other without temporal delay, then it is
usually necessary to “lump” their computation together into a
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new system block. Conversely, every temporal delay occurring
during the communication between causal blocks can be ex-
ploited to isolate parts of the integration procedure, whose in-
puts depend only on past signal values. These parts can be inte-
grated autonomously and in parallel with the rest of the scheme
because their outputs do not propagate back to the respective in-
puts instantaneously. Using words taken from the digital signal
processing jargon, if an interconnection of blocks does not give
rise to a delay-free loop, then causality is preserved in the cor-
responding computation.

We deal with systems that are conveniently represented in
terms of network models, whose mathematical descriptions
cannot preserve the modularity expressed by the network due
to the presence of instantaneous loopbacks among blocks. In
particular, we will devote our attention to networks whose
blocks are represented by filters, each described by its own
(either linear or nonlinear) transfer characteristic.

It is known that filter networks unveil a nontrivial computa-
tional problem when their topology includes loops along which
signals propagate in negligible time. Graph topology-based
methods exist which detect such loops [3]. In the linear case,
the filters forming the delay-free loop can be gathered together
into an equivalent, higher order filter [4]. In the nonlinear case
the design of an exact (or approximated) lumped equivalent
solving the noncomputability is less obvious.

Recently, a numerical method for the discrete-time computa-
tion of delay-free loop network topologies has been proposed
limited to the case where all filters are linear: the particularity
of this technique is the computation of every filter block even
in presence of the delay-free loop [5]. Since the method works
in discrete time, it assumes that every filter is converted into the
digital domain prior to the application of the method itself. Due
to the preservation of the filter blocks in the delay-free loop, ad
hoc analog-to-digital transformations can be chosen depending
on the complexity and particular properties of every single block
[6], [7]. In this paper, we extend the aforementioned technique to
networks containing multi-input/single-output nonlinear filters.
We propose a method for the computation of these networks
that is alternative to previously existing solutions working either
in the Kirchhoff or wave domain [8]–[10]. The method works
in the Kirchhoff domain and asks to solve a nonlinear implicit
system at every discrete computation step. We provide an al-
gorithm for the detection of delay-free loops in the network,
and analyze the relationship existing between computability and
causality. Two different approaches for the solution of the non-
linear implicit system are proposed. Moreover, it is shown how
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Fig. 1. Generic network block � .

the technique can be scaled to the case of two or more networks
that are connected to each other. Finally, two application exam-
ples are proposed: the first one deals with the computation in the
discrete time of the Chua–Felderhoff RLC circuit [11], [12]; the
second one shows the applicability of the method to a model of
circadian cycles, whose oscillation emerges out of an intracel-
lular signal transduction network for which a digital filter-based
computation approach has not been attempted previously [13],
[14].

This research initially stemmed from some specific problems
encountered in the field of physically based sound synthesis,
concerning the excitation of mechanical and fluid-dynamic sys-
tems [15]–[17]. By means of an earlier and simplified version of
the proposed method, capable of handling single-input/single-
output blocks, we have modeled the acoustics of a mechanical
model of two nonlinear contacting resonators [18], and com-
puted a digital version of the “Dolby B” audio tape noise reduc-
tion system [19].

The remainder of the paper is organized as follows. After in-
troducing the needed notations and algebra in Sections II, we
explore in Section III how the method can be used to detect
delay-free loop networks, and how it applies to their computa-
tion. Conditions for the modularization of the computations are
given in Section IV. Finally, the two application examples are
discussed in Section V.

II. NETWORK BLOCKS AND TOPOLOGY

In this paper, we consider a digital network composed
of nonlinear and linear discrete-time multiple-input
single-output (MISO) filters . The
generic th filter has inputs , grouped into the
column vector , and one output (see Fig. 1).

The formalism introduced in this section provides a com-
pact matrix description of the network , which allows to de-
tect memoryless interactions between blocks, and the conse-
quent generation of delay-free computational loops between the
output and the input of the generic block .

A. Blocks

For convenience the nonlinear and linear blocks are num-
bered from 1 to and from to , respectively.
The transfer characteristics are all causal. At the generic com-
putation step they are written as follows [18]:

• nonlinear blocks

(1)

• linear blocks

(2)

in which .
In both (1) and (2), we have highlighted two contributions

to the output at time step : an external contribution due
to the input , and an internal contribution due to the filter
state. In (1) this separation is formal, and the internal state is
represented by an argument of the nonlinear function that
does not depend on the input , and ensures that for every pair
of steps such that if
then (i.e., if the input is the same at both steps
then so is the output). If then reduces to an algebraic
nonlinear element, otherwise is a dynamic nonlinear element
[11].

In (2) this separation is explicit, since the output of a linear
system can always be written as a superposition of the free and
forced evolution. Consider a scalar digital filter with

zeros and poles, represented by the following transfer
function in the Zeta-transformed domain [6]:

(3)

Then can be immediately expressed in the form (2), with

(4)

This result is straightforwardly generalized to the multiple input
case , with

(5)

At every step can be computed by disconnecting the th
filter input from the network or, equivalently, by feeding it with
the input [20]. The invariance of the response seen
in the nonlinear case clearly holds also for the linear blocks. In
this case implies when

.
Equations (1) and (2) can be rewritten in matrix form—we

denote transposition by using the symbol :

(6)

(7)

with

and
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...
. . .

...

B. Topology

A digital nonlinear network is formed by connecting the
blocks described in the previous section. In what

follows the topology of the network is defined by a set of equa-
tions that specify how the outputs are connected to the inputs

of the network blocks.
The blocks are connected to form the network in such

a way that the th component of the th input is a linear
combination of filter outputs, plus an external (possibly
null) scalar signal . For the generic th block, this connec-
tivity structure is illustrated in Fig. 1 and can be summarized as

(8)

Equation (8) can be rewritten in matrix form

(9)

in which

and where .
The matrix completely specifies the topology of the net-

work and has the following meaning: a nonzero element in the
th column of indicates that the output of the th block is con-

nected to the input of some other block of the network. More
precisely, contains a nonzero element at position ,

if and only if the output is connected to , where the
integer indicates the total number of scalar inputs up to
the th filter: . If we define the total number
of scalar inputs as , then the size of is

.

III. COMPUTATION OF THE NETWORK

A. Detection of Delay-Free Loops

The formalism introduced in Section II applies to a network
having any sort of topology, including the case in which there

are no delay-free loops. In general it is computationally conve-
nient to identify the components in that need the solution of

delay-free loops, then to apply the method individually to these
components while leaving the computation of the rest of the net-
work to a sequential procedure.

This section describes a graph theoretic method that subdi-
vides the network into a set of disjoint subnetworks and estab-
lishes an order of precedence in which subnetworks can be com-
puted either sequentially or in parallel. As a byproduct, the pro-
posed method detects delay-free loops in the network.

The method works in three main steps. First, a signal flow
graph is constructed based on the blocks and topology of the
network . Second, the strongly connected components of the
graph are identified.1 Third, an algorithm adapted from the
graph-based framework of Crochiere and Oppenheim [21] is
used for defining the order of precedence in the computation of
the subnetworks. Each of these steps is detailed in the remainder
of the section.

A directed graph associated to is constructed as follows:
has vertices that encode corresponding network

blocks; an edge is drawn from vertex to vertex if has a
delay-free effect on , i.e., and for
some .

Strongly connected components of the directed graph can
be found using standard depth-first-search algorithms available
in the literature [22]. Note that has a nontrivial strongly con-
nected component (i.e., one with two or more nodes) if and only
if the network contains a delay-free computational loop be-
tween the blocks of that component.

Strongly connected components are then labeled using the
following algorithm:

1. Set .

2. while is not empty do

3. Find components that do not have incoming edges
from other components and label them as

4. Remove from all the vertices that belong to , ,
together with their outgoing edges

5. Increment

6. end while

A network component is formed by the blocks and
branches of that were encoded respectively by the vertices
and edges of . The labeling defined by the above algorithm
provides the order of precedence in the computation of network
components: by definition the components can be com-
puted directly from the inputs and their internal state, since
their inputs do not depend on the state of other subnetworks;
the computation of , , can be carried out once the
outputs from are known. Note also that for a given , the
networks , , can be computed in parallel.

Fig. 2 shows an example of a signal flow graph associated
to a network . Assuming that all the blocks in the network are
single-input single-output systems (i.e., ), the matrix
that specifies the network topology is in this case the transposed

1Recall that a strongly connected component of a directed graph is a maximal
set of vertices that are all reachable from each other through a path of directed
edges of � .
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Fig. 2. Example of graph � associated to a network, and labeling of its four
strongly connected components. The network component � is computed
first, network components � and � are then computed in parallel, and
the network component � is computed last.

of the adjacency matrix [22] of the graph .2 All the components
of this network, except for , contain delay-free loops.

Given the analysis presented in this section, a generic network
described through (6), (7), and (9) can be computed if its

nontrivial (i.e., with two or more blocks) subnetworks can
be computed. Therefore, without loss of generality we restrict
our attention to the computation of networks whose signal
flow graph is strongly connected.

B. Algebraic Rearrangement

Since connects nonlinear and linear output to nonlinear
and linear input blocks, it can be conveniently described as the
juxtaposition of four submatrices, respectively, accounting for
nonlinear-to-nonlinear , linear-to-nonlinear , non-
linear-to-linear , and linear-to-linear connections
[18]:

(10)

Using (6) and (7), and can be eliminated in (10) thus
obtaining the two following equations:

(11)

(12)

By moving to the left-hand side of (12), one can write

(13)

where is the square identity matrix sized . If the
matrix is invertible, then can be isolated in
(13):

(14)

Finally, the right-hand side of (14) can be used to eliminate
in (11), in such a way that remains the only unknown. In
fact, after some algebraic manipulation (11) can be rewritten as

(15)

2Recall that the adjacency matrix of a graph has a nonzero element at the
position �, � if there exists an edge from vertex � to vertex �. In the case of our
matrix ��� , the element �, � is nonzero if there is an edge from � to �, i.e., ��� is
the transposed of the adjacency matrix.

with

C. Causality and Computability

The causality of a filter network is a necessary condition
for its computability. Conversely, the same condition is not nec-
essary for the existence of solutions. An example can be pro-
vided of a simple linear delay-free loop network made by inter-
connecting causal blocks which provides noncausal signals: for
this reason, it cannot be computed [5]. We want to stress here
that the causality of all blocks , , does
not imply the causality of the resulting network .

More specifically, we may wonder if a causal delay-free loop
network is also computable, or, conversely, if causal delay-free
loop networks exist which cannot be computed using the alge-
braic rearrangement given in Section III-B. In the linear case,
the answer to this question is that causality is equivalent to com-
putability. In fact, it can be demonstrated that if the linear part of
the network, i.e., the subnetwork obtained by removing all
nonlinear blocks along with their input and output branches, is
causal, then exists [5]. Key passage in that demonstration
is to rearrange the equations in the unknown variable . In our
case, this rearrangement leads to the following equation:

(16)

It can be proved that the invertibility of the matrix
is a necessary and sufficient condition for the causality of .
It is easily verified [5] that this matrix and the matrix defined
in Section III-B have the same determinant, . Therefore,
this value completely characterizes the causality as well as com-
putability of . Note that this result says nothing about the
stability of the network.

The above rearrangement can be extended to the nonlinear
case. By substituting (15) in (6), we obtain

(17)

in which collects the
contributions of the internal state components and the ex-
ternal inputs. The only unknown in (17) is .

Analogously to the linear case, a sufficient condition can be
given which ensures that the output exists and is uniquely
determined by the input and the internal states and

. In fact, the implicit function theorem states that given the
function

(18)

if there is a point for which and the
Jacobian is not singular, then a function is
defined implicitly in an open neighborhood of that point, which
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satisfies for any in that neigh-
borhood. In our case the Jacobian can be written from (18) as

(19)

The structural similarity between the matrix , in-
troduced in (16) to isolate the output in , and the Jacobian
(19), which proves the existence the output in the nonlinear
part of the network, is evident. Notice, however, that in-
tegrates structural knowledge of the overall network. Interest-
ingly, in the particular case of a purely nonlinear
network and, hence, there is substantial formal analogy between
(19) and its linear counterpart, i.e., . In general
inherits the structure of , which is typically a full matrix.

If the Jacobian (19) is globally nonsingular, then the output
can always be uniquely determined from . If the network

is globally computable, then it is also unconditionally causal.
As opposed to the linear case, here we are not able to infer the
opposite, i.e., that causality implies computability. In conclu-
sion, the nonsingularity of completely characterizes causality
as well as computability in , while the nonsingularity of

implies the computability (and, hence,
causality) of in the neighborhood of .

D. Solution of the Network

The computation of the network at time can be decom-
posed into the following steps (refer also to Fig. 3).

1: Compute and from (17) and (15) using inputs
and states , .

2: Compute and from (14) and (7), respectively.
3: Update states into and .

In particular can be computed in the last step by feeding
each filter with a null signal [20]. Note that no computation is
needed for if the filters are realized in transposed di-
rect form [4], [5]. The critical step in this procedure is the first
one, i.e., the computation of the nonlinear blocks. More pre-
cisely the computation of from (17) requires to solve an im-
plicit system of nonlinear equations. In [23] a strategy was pro-
posed which amounts to applying the Newton–Raphson (NR)
method to find iteratively. This strategy has some simi-
larities to what Borin et al. have proposed in a Kirchhoff-based
nonlinear system solver [10]. Note however that only algebraic
nonlinearities are considered in [10], while the nonlinearity in
(17) is dynamic due to the presence of the internal state .

The NR algorithm [24] searches for a local zero of the func-
tion defined in (18). A pseudo-code description of the algo-
rithm is the following:

1. Set and

2. repeat

3. Compute from (18)

4. Compute

5. Compute

6. Compute

7. Increment

8. until becomes small enough

9. Set

An alternative and less computationally intensive approach
is based on fixed-point (FP) iteration [24]. If we redefine the
function as

(20)

then FP iteration computes the network outputs as fol-
lows:

1. Set and

2. repeat

3. Compute from (20)

4. Compute

5. Increment

6. until becomes small enough

7. Set

However, in order for FP iteration to converge, one must en-
sure that the nonlinear function satisfies more restrictive hy-
potheses. Namely, must possess a “small” Lipschitz constant:

(21)

with . If has a Lipschitz constant , then
an estimate of can be given:

(22)

Therefore, has a Lipschitz constant . More-
over, assuming that one can write3

(23)

Such an estimate proves useful when making preliminary con-
siderations on the use of FP iteration [19].

IV. MODULARITY

Each time a network is exposed to a structural change,
for instance due to the removal, the rewiring or the insertion
of one or more blocks, the and/or matrices must be refor-
mulated. The removal of one block simply requires to cut the
corresponding column in , as well as the row and column in

describing its instantaneous behavior, if the block is linear.
Rewiring implies a rearrangement of the nonzero elements in

. Conversely, the insertion of one or more blocks requires to

3This assumption is not restrictive: if ��� �� � one can find an equivalent
network with ��� � �, by inserting “dummy” linear elements � � � be-
tween nonlinear-to-nonlinear connections.
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Fig. 3. Schematic of the proposed method.

resize and possibly , with the inclusion of nonzero elements
in these two matrices.

In this section we show that the insertion operation can be
realized by means of a block-sized rearrangement of and ,
holding the nonrestrictive hypothesis that the structure of the
resulting network still admits a description as the one given in
Section II. The possibility to restructure the network by rear-
ranging blocks of matrices is advantageous when encoding the
method into a software program that enables interactive access
to the network structure.

Two filter networks and , that are described by (1)–(8),
can be assembled together into one super-network having the
same description provided that the signals exchanged between
the two networks superimpose linearly to their respective inputs
in the way expressed by (9). Holding this assumption, the cross-
connections between and affect only the connectivity
(8), in which an additive component must be included to account
for the signals coming from the mutual network. In this way
(6)–(9) are rewritten for and respectively as (see Fig. 4)

(24)

and

(25)

In , the additive component appears in (24) in the form of a
matrix sized , which contains a nonzero
element at position , if the output of the th filter in

sums to the th input of the th filter in , otherwise the
same element is null. Symmetrical considerations can be made
for the meaning of in the connectivity equation of in
(25).

The equation sets (24) and (25) can be grouped together to
form the following system:

Fig. 4. Interconnection of two filter networks � and � .

(26)

in which the first vector equation is obtained by putting the first
equation in (24) on top of the first equation in (25), i.e.,

The second equation in (26) is constructed in the same way, i.e.,

By following the same construction technique, the third equa-
tion in (26) is obtained by defining,

The first and second equations in (26) have a structure which
is identical to that of (6) and (7), respectively. Yet, the third
equation does not have the same structure as (9) since cannot
be partitioned into four submatrices having the same meaning
as , , , and in (10).

The structure of can be observed if we explode its four
components , , , and , which do possess that struc-
ture by their own definition,

(27)
By rotating so as to swap the second and third row as well as
the second and third column, the matrix takes the form required
by the connectivity equation. We denote the resulting matrix
again with ,

(28)
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This rotation implies that in the third equation in (26) the second
and third rows of

must be correspondingly swapped. By respectively denoting the
rotated versions of , , and again with , , and , then we
obtain an equation that matches (10), with , , , , ,
and given by the previously defined vectors and as in (28).
The decomposition of this matrix now gives

In conclusion, the interconnection of and via and
is realized by diagonally joining and into a new ma-

trix , and by composing according to the structure given by
(28).

Using the matrices and of in the definition of leads
to the following result:

(29)

As a particular case, if does not contain linear blocks then it
is . Hence, the inverse needs not to be recalculated.
Furthermore if (no cross-connections exist
between the linear blocks of and ), then is obtained
by diagonally joining and . In the general case, i.e.,
when there are branches connecting linear blocks from one net-
work to the other, one can still exploit previous knowledge of

and and compute through simple block ma-
trix inversion [25]

(30)

where and

are the Schur components of and ,
respectively.

It is straightforward to extend the block-based insertion pro-
cedure to the case where networks are
connected together. In fact, it is sufficient to initially define

, then iterate the following operation times
starting with : at step the network is joined to
the super-network obtained at the previous step, and is in-
cremented. After the last iteration, is the interconnection of

.

V. APPLICATION AND EXAMPLES

The proposed method allows to find the (supposed to exist)
solution of a causal discrete-time filter network, provided the
availability of a numerical strategy solving the implicit system
(15) or, equivalently, (17). Inaccuracies in the simulation of a

Fig. 5. Chua–Felderhoff nonlinear RLC circuit.

continuous system reside in the approximations that are intro-
duced by the analog-to-digital maps transforming the contin-
uous-time blocks into the discrete-time domain. Such domain
transformations must be performed before computation.

Since the structure of the filter blocks is preserved by the
method, specific analog-to-digital maps can be selected de-
pending on the features and the complexity of each block. This
freedom of choice allows to control the accuracy with which
every filter block is modeled in the discrete-time domain. The
local control of the accuracy may help add insight in systems
for which the exploration of aspects such as the local sensitivity
to parameter changes and the robustness against local perturba-
tions is crucial as much as the accurate representation of their
dynamics. This is the case, for instance, of some biological
regulation networks [26], [27]. Later in this section we will
provide an example of an intracellular transduction network
whose numerical solution is sensitive to the value of the tem-
poral step, and where the exact computation of the delay-free
loops contained in it leads to a more robust solution.

In the next paragraphs we compute a chaotic circuit that has
been previously studied in several other works by the audio
signal processing community, to prove the reliability of the pro-
posed approach. Besides this test, the methods proposed here
have already been successfully employed in simulations of non-
linear acoustic systems, to which the reader is referred [18],
[19].

A. Realization of Chua–Felderhoff Circuits

Because of their sensitivity to the integration scheme,
Chua–Felderhoff circuits have been used in the past to test the
robustness of methods for the computation of nonlinear digital
filter networks [9], [10].

Fig. 5 shows the electrical equivalent of the Chua–Felderhoff
RLC circuit. Particular to this network is the charge-dependent
capacitance which establishes the following relation be-
tween the voltage at the capacitor and its charge [10]:

(31)

in which and are characteristic parameters of the capac-
itor.

By summing the voltage at all passive components using the
orientations given in Fig. 5, i.e., , and by re-
calling that and respectively for the voltage
at the resistor and the inductor, then it is immediate to derive the
following equation:

(32)

The right-hand side of (32) states that the charge is filtered out
of a linear system modeling the RL series. The left-hand side of
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Fig. 6. Filter model of the Chua–Felderhoff circuit.

(32) states that is instantaneously needed to compute the signal
, that is, the voltage measured at the RL series feeding the

linear filter. The meaning of this equation becomes evident if
we move to the Laplace domain and rewrite (32) as

(33)

in which is the voltage-to-charge transfer function ac-
counted for by the RL series.

The filter network modeling the Chua–Felderhoff circuit is
shown in Fig. 6. It is straightforward to see that this network
contains one linear and one nonlinear block, and captures the
relation (32) along with the nonlinear function (31).

The analog-to-digital transformation of into
can be obtained by mapping the Laplace into the Zeta domain
by means of the bilinear transform :

(34)
From (6)–(9), it descends , , , further-

more

(35)

By setting , , ,
, and with

and , we obtain the charge/current
phase portrait in Fig. 7, for which we have chosen a sampling
frequency 57 MHz, and computed the cur-
rent at every temporal step by using first-order differences
of the charge: . Note that the
discrete-time version of the excitation signal is obtained by
posing .

Similarities with previous results obtained using methods
working in the wave and Kirchhoff domain using the same
simulation parameters are evident [9], [10].

B. Signal Transduction in Circadian Cycles

The dynamics of intracellular signals is often inspected using
deterministic or stochastic models, that compute the concentra-
tions along time of the chemical species involved in a biological
process [28]–[30]. Both approaches move from the information
contained in a signal transduction network, that describes how
the chemical reactions are coupled together to form this process.
Each reaction transforms reactants into products and it is asso-
ciated to a rate equation, that is usually expressed in the form
of a nonlinear differential equation providing the dynamical de-
scription, or kinetics of a reaction. The rate equations associated
to a signal transduction network must be completed with a set
of kinetic parameters, that are obtained from in vivo or in vitro

Fig. 7. Phase portrait of the Chua–Felderhoff circuit model.

measurements or from qualitative estimations of temporal vari-
ations of concentration. More recent approaches to biological
dynamics rely on algorithms that are rooted in formal language
theory [31].

Most deterministic models, hence, derive a nonlinear ODE
system from a signal transduction network. This system often
contains tens of rate equations in the unknown concentration
variables. Almost all biologically relevant signal transduction
networks contain feedback loops: from a biochemical point of
view, loops are interesting because they account for coupled re-
actions providing a cyclic transformation of the species involved
in the loop. This implies that every chemical reaction forming
the loop is indirectly fed by products of the reaction itself. Since
the concentration of reactants determines the kinetics, these re-
actions are ultimately subjected to a form of feedback control.
The reversibility of biochemical species through transduction
loopbacks is a key aspect in the regulation and renovation cy-
cles of the living cell.

If we assume that the biological information propagates
slowly enough over a transduction network, i.e., that the trans-
formation of the matter across the reactions is not instantaneous,
then these ODE systems can be solved using explicit integration
methods that step over adequate time slots. Cases exist in which
slow propagation cannot be invoked due to the presence of fast
coupled reactions in the transduction network [32]. In these
cases, the application of explicit integration methods can lead
to inaccurate or unstable solutions.

The aspect of propagation is usually neglected during the
solution of deterministic ODE systems modeling biochemical
signal transduction, furthermore rarely emphasis is given to how
rate equations are integrated. In the following we illustrate an
example which demonstrates that the mere application of an in-
tegration method can lead to inaccuracies in the results, even in
cases where the numerical solution is inherently robust.

We analyze a model of circadian cycles (or rhythms) in
Drosophila melanogaster [14]. Existing in almost every living
organism, circadian rhythms are evoked by temporal variations
in the expression level of specific genes. The periodicity of such
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Fig. 8. Signal transduction network model of circadian rhythms in Drosophila
melanogaster [33].

variations gives rise to a surprisingly robust biological clock,
synchronized with daylight and performing a complete cycle
about every 24 hours. The model we analyze has a particularly
low sensitivity to the variations of its kinetic parameters. This
property is explained by assuming that it incorporates robust-
ness in the transduction network.

Fig. 8 shows this network. In this figure, every arrow cor-
responds to an intracellular chemical reaction involving DNA,
messenger RNA (mRNA), and proteins. Intranuclear reactions
are depicted inside the rectangle. Arrows which are not targeted
to a product account for reactions of degradation.

According to Fig. 8, the genes that produce the Timeless
(TIM) and Period (PER) proteins via the synthesis of the re-
spective tim and per mRNA are inhibited by the presence, inside
the nucleus, of the PER–TIM protein complex. This complex
grows outside of the nucleus, as a result of two parallel series
of reactions. As soon as it migrates inside the nucleus, it acts
as a suppressor of the tim and per transcription, thus providing
a negative feedback. The action of the PER–TIM complex over
the synthesis of mRNA is visualized in Fig. 8 using a couple of
arrows in dashed line. It is interesting to recall that the formation
of the PER-TIM complex is regulated also by the degradation
induced on mature TIM by light, whose role is not taken into
account in our analysis.

1) Rate Equation Model: The derivation of the rate equations
from the reactions shown in Fig. 8 is not explained in this paper
[13], [34]. The coupled reaction

per (36)

forming the lower extra-nuclear pathway of the transduction
network, results in the following rate equations:

(37)

in which , , , and are molecule concentrations of
the biochemical species that are involved in the per pathway.
Symmetrical functional relationships hold for the species ,

, , (upper pathway), and give rise to structurally iden-
tical rate equations just by substituting the symbol in every
equation with a [13]. Finally, the coupled reaction (nuclear
PER-TIM) PER-TIM forming the middle pathway results in
the following two rate equations:

(38)

in which and are molecule concentrations of the
PER-TIM and nuclear PER-TIM complex, respectively.

2) Filter Network Model: Similarly to what happened to the
nonlinear RLC voltage (32), every ODE in (37) and (38) is the
result of superposing input components and algebraic nonlinear-
ities to linear terms accounting for degradation. For instance, the
second equation in (37) has the form

(39)

in which we recognize the three additive terms on the right-hand
side to be respectively the input, the nonlinear component, and
the degradation term.

By repeating the reasoning that we made to obtain (33) from
(32), we can model in (39) as the output of a linear filter,
having transfer function and being fed with

. Note that is a function of the filter
output .

Structurally identical models hold for all ODEs in (37), so
that we can build the filter network of Fig. 9. Let the reader note
the structural similarity existing between this filter network and
the transduction network in Fig. 8.

In Fig. 9, it is

(40)

As before, the nonlinearities , , , and , are, respectively,
obtained from , , , and by substituting with sym-
bols. Furthermore

(41)

Rewriting (40) and (41) in the forms (1) and (2) is a straight-
forward but tedious exercise, that is omitted here. The indexes
of the input/output signals to/from every block are directly de-
rived from the corresponding block indices: for instance, it is

as well as .
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Fig. 9. Filter network for circadian rhythms.

TABLE I
PARAMETERS USED IN THE CIRCADIAN CYCLE MODEL

Fig. 10. Evolution of the molecule concentrations � , � , � , � , � , and
� in the circadian cycle filter model.

Every linear filter models a pure exponential decay. We dis-
cretize the lowpass transfer function over a temporal step

by means of a simple backward Euler analog-to-digital map:
, thus obtaining the discrete-time transfer

function

(42)

(In general less trivial transformations are needed for filters
having more sophisticate transfer functions.) Discrete-time
versions of and are obtained by changing, in (42), the
constant with and , respectively.

In this way, we form the system of vector equations (6)–(9).
Branches containing pure multipliers are embedded directly
in the matrix . Hence, we will have ,

, ,
, and . Since there are nine

nonlinear blocks, the decomposition (10) results in a submatrix
sized 9 9. The submatrices , , and come

out as a consequence.
3) Simulation and Results: A simulation of the filter network

of Fig. 9 using the parameters listed in Table I [13], along with
, , ,

, and , is shown
in Fig. 10.

In this simulation every state variable has been set to 0.05
nmol, furthermore we have chosen a temporal step 7.5
s, which allows a quite fine granularity of observation of the
biological phenomenon. Using this step, a 72 h simulation as
that shown in Fig. 10 required 60 s computation time on a 1.7
GHz Linux laptop running Matlab.

It can be observed that all molecule concentrations reach a
stationary 24 hour oscillation period after an initial transient
lasting about 20 hours. The ability of the signals , and

to propagate information is evident from the causal evolu-
tion of their concentrations along time. Identical considerations
and plots can be drawn for , and , transducing signals
across the upper pathway in Fig. 8.

It is interesting to compare the accuracy of the proposed
model with that of a similar, explicitly computable filter net-
work. Explicit computation can be obtained by turning all
delay-free loops into corresponding computable structures. The
most obvious choice is to insert a delay unit in series with every
linear filter, hence changing every transfer function ,

, into . Such a substitution
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Fig. 11. Dependence on sampling time of the peak molecule concentrations
(upper plots) and periods of oscillation (lower plots) for � . Solid line: Delay-
free loop network. Dashed line: explicitly computable network. Asterisks denote
the available data, from which lines have been interpolated.

can be avoided for , since leaving this transfer function
undelayed does not harm explicit computability. Of course, the
explicit computation requires less simulation time compared to
the delay-free loop computation, mainly because the solution
of the implicit system (17) is no longer needed.

Fig. 11 shows peak molecule concentration values and pe-
riods of oscillation for during the stationary regime, ob-
tained by simulating the model respectively using the proposed
method and its explicit counterpart. The data in Fig. 11 result
from simulations in which was set, respectively, to 7.5, 15,
30, 60, 72, 90, 120, 180, and 360 s.

The results obtained from the delay-free loop filter network
are more robust against the granularity of the computation step,
in terms of accuracy of both peak concentration values and os-
cillation periods. Similar results hold for all signals traveling
along the network. For small steps (approximately )
the accuracy of the explicit scheme becomes comparable to that
of the implicit computation.

Interpolation of these data results in almost linear functions
for both schemes, independently of the choice of peak molecule
concentrations or periods of oscillation to benchmark accuracy.
Solid lines denote interpolations of the results from the implicit
scheme, while dashed lines interpolate explicit computations.
These lines exhibit different slopes depending on the computa-
tional scheme: those provided by the explicit scheme are steeper,
indicating faster accuracy decay with increasing computation
step.

Differences in the results emerge also when modeling the
chaotic oscillations of , , and using the delay-free
filter network instead of the explicitly computable scheme.
Chaos arises when and are respectively set to 0.35
and 5.3 nmol/h, while leaving all other values untouched [33].
Fig. 12 shows phase portraits of these molecule concentrations
taken during a 236 day temporal window, after removing the
first 3 days to let the trajectories move into the basin of the
strange attractor. The data produced by the delay-free and
explicitly computable filter network are shown in the upper and
lower plot, respectively. In both cases we have set ,

Fig. 12. Chaotic oscillations in the circadian cycle model. Upper plot: delay-
free filter network. Lower plot: explicit scheme. Ellipses in dashed line highlight
a plane section across which trajectories move.

along with starting with the same initial conditions as those
used to obtain the plots in Fig. 10.

Such differences can be appreciated by observing the
number and points of intersection of the trajectories across a
plane section, as that depicted in the same figure in dashed
line. Even a qualitative inspection of such intersections shows
that both these figures noticeably change depending on the
type of scheme adopted for the integration. An analysis aimed
at comparing the trajectories resulting by the implicit and ex-
plicit scheme would require a detailed treatment of the system
behavior during chaotic regimes, and is left to further research.

VI. CONCLUSION

We have proposed a method for the solution of nonlinear dig-
ital filter networks containing delay-free loops, whose features
turn useful when the network topology and the structure of the
individual processing blocks must be preserved during the com-
putation. Examples show that the method provides accurate so-
lutions of dynamic models described by nonlinear ODE sys-
tems, which are not obvious to be integrated holding the con-
straint of instantaneous propagation in the discrete computa-
tional model.

Concerning the field of audio signal processing, the method
may find convenient application especially in the simulation
of some analog systems of the past decades, whose peculiar
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sonic characteristics were largely due to the presence of feed-
back loops in their circuitry. Such systems, ranging from non-
linear filters to tube amplifiers, are now object of an intense
research and development activity for the market of “virtual
analog,” aiming at accurately reproducing their features through
real-time software running on general purpose computer archi-
tectures. In parallel to these applications, there is a growing in-
terest for the virtual reproduction of sounds produced by dy-
namic contacts of simulated materials, and their applications to
the field of human–computer interaction [35].

The solution of a nonlinear implicit system at every step
seems to be unavoidable. This aspect prevents the method
from proving really useful for the computation of stochastic
signals. Especially in systems biology applications, where a
stochastic characterization of the signals is often needed, the
reader should rather survey algorithms that are explicitly ca-
pable of dealing with random processes [2]. On the other hand,
if a delay-free loop network contains only linear blocks, then
the application of standard mathematical tools for the linear
filtering of stochastic signals may enable to derive specific
results for such networks once they are algebraically rearranged
using the proposed method.

While deriving the equations, we have shown that the com-
putability of the solution is in relationship with the network
structure. Moreover, in Section V-B we have seen that the
same network has a structural correspondence with the signal
transduction network it originates from: this means that such a
filter network might enable to conduct investigations on specific
aspects of a biological model directly on the computational
scheme, i.e., using this scheme not as a mere integrator, but,
rather, as a complete in silico version of the model. Taken
together, these two facts suggest that the proposed method may
help disclose so-called emergent network properties, that are
today intensively researched in computational biology for their
connective role between structural characters and functional
meaning of biological networks.
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