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ABSTRACT Machine learning (ML) has become pervasive in various research fields, including binaural
synthesis personalization, which is crucial for sound in immersive virtual environments. Researchers have
mainly addressed this topic by estimating the individual head-related transfer function (HRTF). HRTFs are
utilized to render audio signals at specific spatial positions, thereby simulating real-world sound wave inter-
actions with the human body. As such, an HRTF that is compliant with individual characteristics enhances the
realism of the binaural simulation. This survey systematically examines the HRTF individualization works
based on ML proposed in the literature. The analyzed works are organized according to the processing steps
involved in the ML workflow, including the employed dataset, input and output types, data preprocessing
operations, ML models, and model evaluation. In addition to categorizing the works of the existing literature,
this survey discusses their achievements, identifies their limitations, and outlines aspects that require further
investigation at the crossroads of research communities in acoustics, audio signal processing, and machine

learning.

INDEX TERMS HRTF individualization, machine learning, spatial audio, binaural synthesis.

I. INTRODUCTION

Machine learning (ML) can be defined as the learning of
algorithms to solve a specific problem based on information
extracted from previous experiences or events, rather than
explicitly programming the algorithm [1]. ML has become
pervasive in several aspects of society over the past few years,
with both industrial and scientific applications. The field of
spatial audio is no exception. Spatial audio techniques find
several applications, including video gaming, teleconferenc-
ing, art, flight simulation [2], devices for blind people [3],
and audio production [4]. An appropriate spatial audio sim-
ulation involves the simulation of the spatial cues used by
humans to localize sound sources in space. These spatial cues
originate from the interactions between the human body and

the sound waves, which result in position-dependent sound
alterations. Head-related transfer functions (HRTFs) describe
these spatial cues as a linear time-invariant (LTI) system
for each sound source position of interest and for each ear.
The use of an HRTF of a specific position to spatialize an
audio signal spatialized with an HRTF of a specific posi-
tion through headphones artificially creates the sensation of
a sound source in that position. HRTFs are individual due to
their close relationship with anatomical traits. Therefore, the
use of an HRTF non-compliant with the individual anatomy,
i.e., a non-individual HRTF, results in an improper spatial
audio experience [5], [6], [7], [8], [9], [10], [11], [12]. Non-
individual HRTFs are prevalent in end-user applications due
to the practical limitations of accessing individual HRTFs.
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Consequently, several methods for HRTF individualization, or
personalization, have been proposed in the literature to obtain
an estimation of the individual HRTF.

Despite the significant relevance of HRTF individualiza-
tion for spatial audio technologies, this area remains poorly
standardized in research. Different researchers have proposed
their methods without a common validation procedure, which
would include a reliable dataset, robust objective metrics,
rigorous perceptual tests, and so on. This makes it difficult
to compare different approaches. In this survey, we provide a
demonstration of the aforementioned lack of standardization,
and despite that, we organized the related literature in view
of future standardization actions. Although there are various
methods for HRTF individualization, this survey focuses on
ML-based approaches. ML approaches can potentially over-
come the limitation of traditional HRTF individualization
methods, which can be time-consuming, limited in accuracy,
and require input data far from being user-friendly. When
properly trained, ML models are able to extrapolate patterns
between input and output data, thereby enabling their gen-
eralization to unseen data. In addition, an estimated HRTF
can be generated in a relatively short time once the model is
trained. Recent advancements in ML can also facilitate the
HRTF prediction from input data that are readily accessible
to end-users, such as pictures. However, ML-based methods
require careful training and validation to achieve good and
unbiased performances.

Some HRTF individualization surveys have already been
published. Several publications have been dedicated to the
broad field of HRTF individualization, including articles [13],
[14], [15], book chapters [16] [17, Ch. 7], and a Ph.D. the-
sis [18]. However, none of these works specifically addresses
ML. Other publications have focused on the measurement
and the numerical simulation of individual HRTFs [19], [20],
the role of ML for spatial audio capture, processing, and
reproduction [21], and for HRTF dimensionality reduction,
categorization, interpolation in addition to HRTF individual-
ization [22]. This survey fills the existing gaps by focusing
specifically on ML-based approaches along with the rigorous
and formal characterization of data-driven approaches in the
processing and evaluation stages.

This survey is organized as follows. After the present intro-
duction (Section I), Section II provides an overview of the
basic concepts related to the HRTF individualization field.
This includes the definition of HRTF and its related represen-
tations, an introduction to the individualization problem, an
overview of the main datasets used in this field, and the outline
of the ML workflow for HRTF individualization. Section III
describes the research methodology conducted to obtain a
comprehensive overview of the existing HRTF individualiza-
tion publications based on ML. Then, these publications are
categorized according to the steps of the ML workflow, which
includes the input data (Section IV) and their preprocessing
(Section V), the output data (Section VI) and their prepro-
cessing (Section VII), the ML models (Section VIII) along
with their training and validation approaches (Section IX),

VOLUME 6, 2025

and their evaluation metrics (Section X). Section XI presents
a discussion of the trends observed in the analyzed publica-
tions, emphasizing their limitations, and proposing avenues
for future research. Section XII concludes the survey.

Il. CONCEPTS AND CATEGORIZATION

A. HRTF DEFINITION

The spatial cues encoded by the HRTF are primarily influ-
enced by three body parts, namely the torso, head and pinnae,
each causing different effects. The shape and size of the head
affect the time and intensity differences between the sounds
received by the two ears, which represent essential spatial
cues for binaural hearing [23]. These differences are known as
interaural time difference (ITD) and interaural level, or inten-
sity, difference (ILD, or IID), and are crucial in determining
the azimuth angle of a sound source. Conversely, the monau-
ral spectral modifications caused by the elevation-dependent
filtering effects of the body components are prevalent for el-
evation perception. The torso, head, and pinnae influence the
HRTF spectral structure in different frequency ranges. With
regard to azimuth localization, the head influences ILD above
1.5 kHz and ITD below this frequency [17, Sec. 1.4]. Torso
reflections affect elevation localization below 3 kHz, espe-
cially for low elevation angles, whereas the pinna influence is
prevalent between 3—4 and 14—15 kHz circa [23], [24], [25],
[26], [27] [17, Sec. 3.4]

HRTFs describe both binaural (ITD, ILD) and monaural
(spectral modifications) spatial cues as an LTI system. The
HRTF set for a subject is a collection of transfer functions
(or impulse responses), one for each sound source position
of interest and for each ear. The HRTFs H; and Hy for the
left and right ears describe the sound modifications caused by
the human body according to the source position (distance r,
azimuth 6, elevation ¢), the frequency f, and the anatomical
characteristics a of the subject [17, Sec. 1.5]:

P{L,R}(r’ 0’ ¢7 f’ a)
Po(r, 1)

Hygy(r, 0, ¢, f.a) = ; &)

where Pr and P, are the sound pressure at the left and
right ears, whereas P is the free sound pressure in the head
center without the head. HRTFs can be equivalently rep-
resented by head-related impulse responses (HRIRs) in the
time domain. Fig. 1 shows an example of an HRTF and the
corresponding HRIR in the median and horizontal planes.
However, further representations exist to account for part
of the information encoded by the HRTF. For instance, the
directional transfer function (DTF) can be extracted from
HRTF to isolate the directional components, whereas the
direction-independent components (e.g., ear canal resonance,
equipment responses, etc.) are represented by the common
transfer function (CTF) [28]. The HRTF H at source direction
s = {0, ¢}, and frequency f can be decomposed into DTF and
CTF as follows [17, Sec. 7.3.2]:

H(s, f)=CTF(f)DTF(s, f), 2)
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FIGURE 1. Example of HRIRs (left) and HRTFs (right) in the horizontal (top) and median plane (bottom). The example presented here corresponds to the
acoustic measurement of a KEMAR dummy head, as reported in the SONICOM dataset [29].

where the CTF magnitude is defined as the root mean square
of H averaged across the S source directions:

1 _
crrp= 235 e e )

Another representation that can be extracted from HRTF is
the pinna-related transfer function (PRTF), which encodes the
sole influence of the pinna. A PRTF can be directly obtained
by isolating the pinna in the acoustic measurement [30] or in
the numerical simulation [31]. Alternatively, the PRTF can be
partially extracted from HRIR at ipsilateral source positions
with a time window that eliminates the influence of the torso
and shoulders [26], [32].

B. THE INDIVIDUALIZATION PROBLEM

The considerable influence of anatomy on HRTF denotes
its individuality, which is a crucial factor. Individual HRTFs
are seldom employed in end-user applications due to the
impracticality of their acoustic measurements. These require
expansive equipment, time-consuming recording sessions,
and experienced personnel. HRTFs are acoustically measured
by placing a microphone inside each ear canal. An excitation
signal, ideally an impulse, is then reproduced through sound
sources placed in the positions of interest, and the micro-
phones capture the impulse response. HRTFs are recorded
around the subject using a spherical grid with a radius of
typically 1 to 2 meters. The grid’s spatial resolution varies
and can differ for azimuth and elevation. The azimuth plane is
typically fully covered with a resolution between 2.5° and 10°,
whereas the lowest elevation angles are neglected because
measuring the HRTF underneath the subject presents practical
difficulties. Due to the impracticality of measuring HRTFs,
a non-individual, or generic, HRTF is often employed, dis-
regarding the subject’s individual anatomy. Generic HRTFs
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are typically recorded using dummy heads that represent
the average anatomical characteristics of a certain popula-
tion [40], [41]. However, utilizing generic HRTFs can result
in several drawbacks including front-back and up-down con-
fusions, degradation of accuracy in elevation perception, and
lack of externalization [5], [6], [7], [8], [9], [10]. In addi-
tion, perceptual aspects other than simple localization may be
affected [11], [12]. Due to the difficulties of measuring indi-
vidual HRTFs and the limitations of non-individual HRTFs,
several studies have focused on HRTF individualization, or
personalization. An HRTF individualization method estimates
the individual HRTF without direct measurements but by re-
trieving and exploiting other subject-specific information that
is correlated with the acoustic characteristics of the personal
HRTEF. Examples of this kind of information include anthropo-
metric measurements, 3D head scans, and subjective auditory
feedback. In contrast, the outcome of HRTF individualization
methods is an HRTF set that has been either retrieved from a
dataset or generated from scratch.

Traditional methods for HRTF individualization can be
broadly grouped into numerical simulation, selection-based,
and adaptation approaches [15]. Numerical simulation ap-
proaches provide an approximate solution to the wave equa-
tion with boundary conditions determined by head, torso,
and pinnae represented by 3D scans [20]. They represent an
accurate approach as they provide HRTFs having similar spec-
tra [42] and localization performances [43] to acoustically
measured ones. Nevertheless, some perceptual differences
exist [37, Sec. 3.3] [43], [44]. Numerical simulation has fur-
ther drawbacks, including the high accuracy required for the
3D scans, the need for scan postprocessing, and the inten-
sive computational load. Selection-based approaches provide
a best-match HRTF by finding the subject with the most
similar characteristics in a dataset. These characteristics are
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TABLE 1. Some of the Publicly Available HRTF Datasets Along With Their Characteristics
N. Numerically N. | 3D
Name . K o Ny Ny Anthropometry Pictures HpTF
subjects simulated directions meshes
Itakura Lab. Dataset 80
111 No 72 72 1 No No No
[33] (KEMAR)
IPI 4
CIPIC 45 No 1250 50 25 3 No No No
[34] (CIPIC)
LISTEN 50
51 No 187 <24 10 No No No
[35] (CIPIC)
hinese pilots Yes
Chinese pilots 58 No 723 <73 e No No No
[36] (CIPIC, GJB 4856-2003)
HUTUBS % Also 440 <n : 93 No 58 96 (HD800S)
[37, 38] (CIPIC, Self-defined) (head) 64 (HD650)
CHEDAR Yes Yes
1253 Yes < 2522 72 < 36 No No
[39] (CIPIC, Self-defined) (head, shoulders)
iDESPREaD Yo
WIiDESPREa 1005 Yes <2562 72 <36 No No e No
[31] (pinna)
SONICOM 200 Yes Yes Yes
. No 793 72 12 No
[29] (ongoing) (RGB, Depth)  (head, shoulders) (HD650)

This Table is a reduced version of Table A.lin the supplementary materials.

typically represented by anthropometric parameters [45], [46]
or subjective feedback obtained with a listening test [47],
[48]. Selection-based methods are quite simple, but limited
in effectiveness since they require a sufficiently representa-
tive database as they are unable to generalize the relationship
between the input and the HRTF. Thus, the selected HRTF
is always an approximation. Adaptation approaches adjust
a non-individual HRTF according to the characteristics of
the test subject. Similarly to selection-based approaches, the
subject’s characteristics can be represented by anthropometric
parameters [28] or subjective feedback [49], [50]. Adapta-
tion approaches have been less investigated in the literature
and found limited applicability due to their limitations. For
instance, several adaptation approaches assume that only the
anatomical size varies across subjects and disregard the highly
individual anthropometric characteristics. In addition, meth-
ods based on subjective feedback, either selection-based or
adaptation approaches, require time-consuming sessions in
which the subject is asked to engage with several HRTFs.

C. HRTF DATASETS

HRTF datasets are collections of HRTF sets of human subjects
and/or dummy heads. These datasets represent the ground
truth to train and evaluate ML models used for HRTF in-
dividualization. The datasets used for ML should be of
adequate size, of high quality, and representative of real-world
data [51], [52]. Table 1 presents some of the HRTF datasets
collected to date along with their characteristics. A more com-
prehensive version of this table is represented by Table A.lin
the supplementary materials. Throughout the survey and in
the table, we employ vertical-polar coordinates, where the az-
imuth 6 is defined between 0° and 360°, whereas the elevation
¢ 1is defined between —90° (bottom) and 90° (top). HRTF
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datasets typically consist of acoustically measured HRTFs, al-
though some are composed of numerically simulated HRTFs
computed from 3D head or pinna meshes. In addition to
HRTFs, these datasets may also include anthropometry, pic-
tures, 3D meshes, which can be employed as input for
HRTF individualization, and headphone transfer functions
(HpTFs).

One of the earliest HRTF datasets is CIPIC [34], which
remains the most frequently used dataset for HRTF individu-
alization, despite the existence of larger and more recent ones.
Also, CIPIC includes an anthropometric specification that has
been largely adopted during the design of subsequent datasets.
As shown in Table 1, HRTF datasets typically include less
than 100 subjects, as HRTF measurement is impractical. The
limited size of the datasets represents a challenge for the train-
ing of complex ML models, such as deep neural networks.
However, datasets of numerically simulated HRTFs represent
an exception, as the acoustic measurement is not needed.
For instance, CHEDAR [39] and WiDESPREaD [31] include
more than 1000 subjects.

D. ML WORKFLOW FOR HRTF INDIVIDUALIZATION

An HRTF individualization task is defined as the estimation of
the individual HRTF based on input data that provides mean-
ingful information on the corresponding subject. Therefore,
HRTF individualization is categorized in the ML paradigm
of supervised learning, where a model is trained to predict
the desired output given the input data. In particular, it can
be considered a regression task, as the output, i.e., the HRTF,
assumes continuous values. In the scope of this survey, we
consider an HRTF individualization method as ML-based if
the core of the method is the data-driven training of a su-
pervised learning model with the goal of generalizing the
relationship between input and output. The input encompasses
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INPUT
Morphological To Anthropometry
o Landmarks

Visual Color images
}A@ Depth images
— 3D scans

Acoustic ——= Binaural recordings

Perceptual —— Perceptual feedback

OUTPUT
Frequency domain HRTF
DATASET F; DTk
‘o PRTF

Time domain————— = HRIR

OUTPUT PREPROCESSING

INPUT PREPROCESSING
Feature scaling Min-max normalization
—o Sigmoid
—o Standardization

o Mean centering

Feature extraction Feature learning
Tj Edge detection

o Voxelization

Data augmentation—° Image manipulation

Feature selection Correlation with HRTF
Correlation with other features
—o Factor analysis
o Literature findings
Dimensionality PCA
reduction

Sparse PCA
—o Autoencoder

ML MODEL

Linear regression——= Multivariate linear regression

Scaling

Log-magnitude
Power

—© Min-max normalization

o Resolution scaling

EVALUATION

Objective ———° SD

—o RMSE

- MAE

—o Monoaural cues
—o SDR

—o MSE

— ISSD

—0 SDE

—oR2

o Itakura-Saito divergence

Neural networks Single-layer FNN —© Standardization
—o DNN —© Mean centering
— CNN 2 RMS normalization
IR Time/frequencyTo Frequency smoothing
RN dlictg o HRIR truncation
< Transformer
Dimensionality —— PCA/2D PCA/Spatial PCA
Tree-based —o Regression trees reduction o ICA
— Random forest | HOSVD
"o LightGBM @R
Other Sparse representation — NMF
0 SVR —o Prony
Reinforcement learning —2 ARMA
o Kernel regression —© Isomap
"> Optimization —© Laplacian Eigenmaps
—© Spherical harmonics

—° Autoencoder

o Absolute angle error

—o Correct ratio

—o Front-back confusion

—o Up-down confusion

—° In-head localization ratio

o HRTF similarity/preference

Auditory model~— Horizontal plane localization

-0 Median plane localization

FIGURE 2. ML workflow for HRTF individualization with the main options adopted by the analyzed studies.

any information that exhibits a correlation with the HRTF.
The output may be the HRTF response in either the time
or frequency domains, or a low-dimensional representation
thereof. In this survey, we disregarded HRTF individualization
methods that use ML to predict a different type of output or to
perform different tasks.

Fig. 2 shows the typical ML workflow followed by HRTF
individualization methods, along with the characterizations
encompassed in each step by the publications analyzed in this
survey. In the following, we present a conceptual overview
of these steps, while the remainder of the survey delves into
the approaches employed by the analyzed literature studies for
each step.

D. INPUT

A variety of input data types can be utilized, which can be
broadly grouped into four categories: morphological, visual,
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perceptual, and binaural. Morphological data, such as an-
thropometry and landmarks, and visual data, such as images
and 3D scans, capture the individual anatomical traits that
influence HRTF. Methods relying on perceptual feedback are
designed to directly optimize the subjective auditory experi-
ence. Finally, binaural recordings encode individual spatial
cues, although they are measured in uncontrolled environ-
ments, in contrast to HRTFs.

D. OUTPUT

The output of ML models for HRTF individualization is
the personalized HRTF. However, one can consider different
HRTF representations, such as HRIR, DTF, or PRTF. Meth-
ods working in the frequency domain usually focus on the
sole magnitude, with the phase information being disregarded.
This choice is justified by the possibility of approximating the
phase by means of a minimum-phase function cascaded with
a pure delay simulating the ITD [53].
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ISEEE i 2y IEEE Open Journal of
dcessing  Signal Processing

Processing
S

TABLE 2. Keywords Used in the Research Queries to Identify the Publications in the Online Databases

Category  Keywords
HRTEF, HRTFs, “Head Related Transfer Function”, “Head-Related Transfer Function”, “Head Related Transfer Functions”,
Field “Head-Related Transfer Functions”, HRIR, HRIRs, “Head Related Impulse Response”, “Head-Related Impulse Response”,
“Head Related Impulse Responses”, “Head-Related Impulse Responses”
Task individual*, personal*, estimat*, model*, predict*, custom*, recommed*, learn*
Method “deep learning”, “reinforcement learning”, “neural network”, “neural networks”, “deep network”, “deep networks”, NN,
etho

NNs, “NN-based”, DNN, DNNs, “DNN-based”, regression, *linear, “sparse representation”

The asterisk (*) wildcard refers to zero or more unknown characters. The exact queries are provided in the supplementary materials.

D. INPUT/OUTPUT DATA PREPROCESSING

This is a step to ensure effective training of ML models.
A typical preprocessing operation for data used in HRTF
individualization is feature scaling, which involves mapping
different features within consistent value ranges. Further, fea-
ture selection and dimensionality reduction can be used to
retain only the relevant information.

D. ML MODEL

Once the data have been pre-processed, an ML algorithm is
selected to train one or more regression models. The number
of ML models depends on how the multidimensional structure
of HRTF data is handled as ML algorithms do not natively
support such a complex structure. In the training of ML mod-
els, an important choice is the strategy employed to split the
dataset into training set, test set, and possibly, validation set.
The latter is typically used to evaluate the trained models
while tuning the model’s hyperparameters.

D. EVALUATION

After training the ML model, the following step is the eval-
uation of the model’s performance. In the context of HRTF
individualization, the evaluation of trained models can be ob-
jective, perceptual, or based on auditory models. The objective
evaluation of an estimated HRTF is typically quantified by
spectral distortion (SD), also known as log-spectral distortion
(LSD). SD measures the deviation in decibels (dB) between
the magnitudes of the ground truth HRTF H and its estimation
H. The SD at azimuth 6 and elevation ¢ averaged for the F
frequency bins is computed as follows:

1 H©O, ¢, NI\
SD@, ¢) = \/F Zle (ZOlog |F1(9,<p,f)|) [dB]. (4)

Further common objective metrics include the root mean
square error (RMSE), which can also be computed for HRIRs
in the time domain, and the signal-to-distortion ratio (SDR).
In perceptual experiments conducted to evaluate HRTF
individualization methods, the localization performances of
subjects using the estimated HRTF are typically analyzed. Al-
ternatively to perceptual experiments, computational auditory
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models can be employed to predict the localization responses
of a simulated subject with a given HRTF.

1ll. RESEARCH METHODOLOGY

The research and screening of literature studies for this survey
were conducted in accordance with the PRISMA method-
ology [55]. The publications were identified by defining a
research query in the following online databases: ACM Digi-
tal Library!, Elsevier Scopus?, and IEEE Xplore®. The query
was constructed using the keywords reported in Table 2,
which were grouped according to the acoustics field of inter-
est (HRTF), the performed task (individualization), and the
method (ML). The keywords were connected with the OR
operator within each group and the AND operator between
groups. However, the keywords related to the task and method
groups were connected with the OR operator for the research
in the title. This was necessary because titles contain fewer
words than abstracts. The exact queries used for each online
database are provided in the supplementary materials. The
identification through the queries was conducted to satisfy the
following inclusion criteria:

I1. Publications included in journal papers, conference
proceedings, or magazines (books, book chapters,
Ph.D. theses, and extended abstracts were excluded)

12. English-language publications

13. Publications up to November 2024 (query execution
date)

I4. Publications proposing an HRTF individualization
method employing ML techniques for the prediction
of HRTF-related information, including HRTF magni-
tude, HRIR, PRTF, and DTF

Fig. 3 shows the PRISMA flow diagram for the literature

research conducted for this survey. The identification process
yielded 858 records, of which 257 duplicates were subse-
quently removed. The remaining 601 records were screened
according to the following exclusion criteria:

El. Unavailable publications

E2. Non-peer reviewed publications

"https://dl.acm.org/search/advanced
Zhttps://www.scopus.com/search/form.uri?display=advanced
3https://ieeexplore.ieee.org/search/advanced/command

35


https://dl.acm.org/search/advanced
https://www.scopus.com/search/form.uri{?}display$=$advanced
https://ieeexplore.ieee.org/search/advanced/command

FANTINI ET AL.: SURVEY ON MACHINE LEARNING TECHNIQUES FOR HEAD-RELATED TRANSFER FUNCTION INDIVIDUALIZATION

Identification of new studies via databases and registers

Records identified from:

Identification of new studies via other methods

Databases (n = 858):
ACM Digital Library (n = 57)
Elsevier Scopus (n = 586)

Records removed before screening:
Duplicate records (n = 257)

Records identified from:
Citation searching (n = 8)

Identification

IEEE Xplore (n = 215)

4

Records screened
(n =601)

(n = 423)

Records excluded

4

Reports sought for retrieval
(n=178)

(n=6)

Reports not retrieved

Reports sought for retrieval
(n=8)

Reports not retrieved

(n=3)

Screening

E2(n=8)

Reports assessed for eligibility
(n=172)

(

(
E5(n=2)

(

(

Reports excluded:

Reports assessed for eligibility
(n=5)

Reports excluded:
E2-7 (n = 0)

4

New studies included in review

(n=76)

Included

FIGURE 3. PRISMA flow diagram of the research and screening of literature studies on HRTF individualization based on machine learning [54].

E3. Methods for tasks related but different from HRTF
individualization such as (a) HRTF upsampling, (b)
HRTF dimensionality reduction, (¢) HRTF clustering,
(d) HRTF filter modeling, (¢) anthropometry automatic
measurement, (f) pinna mesh modeling followed by
numerical simulation to compute HRTF, (g) sound lo-
calization automatic prediction, (k) HRTF calibration
for auditory localization improvement and (i) percep-
tual studies on HRTFs
HRTF individualization methods not based on ML
Methods to estimate ITD and ILD
Methods for HRTF selection relying on ML to analyze
the HRTF spectrum’s peaks and notches, the anthro-
pometry, and the perceptual outcomes of given HRTFs
Surveys, reviews, datasets, and similar publications on
HRTF individualization

In accordance with the PRISMA flow diagram, a prelim-
inary screening was conducted with the titles and abstracts
of the publications being analyzed. This screening resulted
in the exclusion of 423 records. In addition, other 8 records
were identified through a citation search among the references
of the identified publications. Then, 9 publications were ex-
cluded since unavailable. The resulting 177 records were then
assessed for eligibility by full-text screening. Applying the
exclusion criteria E2-7, we finally included 76 publications
to be examined in this survey. Fig. 4 shows the temporal
distribution of these publications. Furthermore, Fig. 5 depicts
the occurrences in these publications of the different options
of the ML workflow for (a) the HRTF datasets (b) the input
types, (c) the output dimensionality reduction techniques, and
(d) the ML models.

E4.
ES.
E6.

E7.
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IV. INPUT

A variety of input data types can be employed to estimate the
individual HRTF. Fig. 5 shows the distribution of the input
types for the analyzed publications. These data can be broadly
grouped into four categories: morphological, visual, percep-
tual, and binaural. The following sections provide a detailed
examination of each of these types of input data.

A. MORPHOLOGICAL DATA

1) ANTHROPOMETRY

The majority of HRTF individualization methods rely on an-
thropometric parameters that are measured for head, torso,
and pinnae. These parameters are typically defined as dis-
tances between specific points on the body, although angle
measurements are also employed. Anthropometry can be
manually measured (e.g., with rulers) or digitally extracted
from images or 3D scans. Alternatively, there are meth-
ods for automatic measurement [56], [57], [58], [59], [60],
[61].

Various anthropometric specifications have been proposed
to describe the relationship between anatomy and HRTF [17,
Ch. 7]. Anthropometric specifications are body measurements
that are typically depicted in two-dimensional sketches. Cur-
rently, there is still no complete and inter-independent set
of anthropometric parameters that fully describe the HRTF.
Despite several studies have investigated the influence of var-
ious body components on HRTF [25], [62], [63], [64], the
exact influence of anthropometry on HRTF remains a topic
of discussion. The KEMAR mannequin’s design included an
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early proposal for anthropometric specifications, which con-
sisted of ten parameters for the head and torso, and 13 for the
pinna [41]. Another specification proposed by Middlebrooks
[28] included six pinna parameters, whereas lida et al. [65]
measured ten distances between the tragus and other points
on the pinna. Some HRTF datasets included anthropometric
parameters defined in national standards, which were not de-
signed for HRTFs. For instance, the HRTF dataset recorded
by Xie et al. [66] included anthropometry in accordance to the
standard GB/T 2428-1998 [67], whereas the Chinese pilots
dataset [36] followed the standard GJB 4856-2003 [68].

In 2001, Algazi et al. [34] proposed an anthropometric
specification for the CIPIC dataset, which included 17 head
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and torso parameters, and ten pinna parameters (see Fig. 6).
This specification remains the prevalent one in HRTF datasets
and HRTF individualization tasks. Modifications to the CIPIC
anthropometric specification have been proposed. Two addi-
tional pinna parameters were proposed within the HUTUBS
dataset [37], [38], whereas the CHEDAR dataset [39] included
five anthropometric parameters derived from the CIPIC ones
and two new parameters. Additionally, a subset of the pinna
control points proposed by Stitt and Katz [69] is based on
CIPIC’s specification set. In addition to classical anthropome-
try, other types of morphological features include area-related
parameters. Teng and Zhong [70] proposed five areas of the
pinna in addition to a subset of the HUTUBS anthropometry
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as input to predict the HRTF magnitude using a random forest.
However, the study does not provide any detail regarding
the measurement of the area-related parameters. Recently,
a wider set of pinna anthropometric parameters, including
distances, angles, areas, volumes and depths, was proposed
and evaluated in an HRTF selection task showing improved
performances over the sole HUTUBS parameters [71].

2) LANDMARKS

Landmarks represent a type of input data that is similar to
anthropometry but not strictly defined by specifications. Land-
marks are defined as the 2D or 3D coordinates of points
located on specific parts of the human body. Jin et al. [72]
applied principal component analysis (PCA) on both DTF
and a set of 20 3D landmarks positioned on the torso, head,
and pinnae. The authors performed a stepwise multivariate
linear regression (MLR) to map the principal component (PC)
weights of the landmarks to the DTF ones. Nevertheless, the
performances of the method were evaluated only on the train-
ing set and with a preliminary localization test on a single
subject. Lu et al. used 3D landmarks to predict the HRTF
using sparse representation [73] and the HRIR using neural
networks (NNs) [74], [75]. Landmarks have also been placed
on pinna images to automatically measure anthropometric
parameters [59], [60], [61], [71].
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B. VISUAL DATA

Similarly to anthropometry, visual data, such as 2D pictures or
3D head and pinna scans, encode morphological information.
However, they exhibit a higher dimensionality and require
increased effort to extract useful information.

1) IMAGES

The recent development of deep learning techniques for im-
ages has also contributed to the HRTF individualization field.
Several hybrid methods using pinna images and anthropom-
etry have been proposed. Lee and Kim [76] trained two
sub-networks with anthropometry and pinna images as input,
respectively. A third sub-network was trained to predict the
HRIR from the former two sub-networks. Zhao et al. [77]
extracted low-dimensional features from pinna images with
transfer learning from the VGG19 network using the AWE
dataset of ear pictures [78]. They trained a convolutional neu-
ral network (CNN) to predict the spherical harmonics (SH)
coefficients of the HRTF using low-dimensional features from
VGG19in addition to head and torso anthropometry. Both Lee
and Kim [76] and Zhao et al. [77] reported lower mean SD
values for the HRTFs estimated using pinna anthropometry—
3.69 and 5.31 dB, respectively—than those obtained using
pinna images—4.47 and 5.4 dB. However, despite worse
results, the effort of manually extracting pinna anthropom-
etry is not required when using pinna images. Miccini and
Spagnol [79] extracted latent representations of pinna im-
ages and HRTFs using a variational autoencoder (VAE) and
a conditional VAE (CVAE), respectively. Subsequently, they
trained a deep neural network (DNN) to map these two latent
spaces. This approach considered only the pinna modeling,
with other body parts modeled independently according to the
mixed structural model paradigm [80]. The authors reported
inconclusive results for both SD and evaluation with a compu-
tational auditory model [81] in comparison to a generic HRTF.

2) 3D SCANS

In addition to 2D images, researchers have also investigated
the use of 3D scans for HRTF individualization. Ko et al.
[82] used depth images derived from the HUTUBS 3D head
meshes to predict the PRTF magnitude with a CNN. They
reported a mean SD of 5 dB, improved over an existing
method [79] and a generic HRTF. Zhou et al. [83] predicted
the HRTF from voxelized 3D pinna meshes comparing CNN
and UNet architectures. The two architectures yielded similar
results on a numerically simulated HRTF dataset. In addition,
they reported lower errors compared to anthropometry-based
methods [84], [85], although the use of simulated HRTFs
could have affected the results. Zhao et al. [86] proposed
a neural network-based approach to predict HRTF from 3D
head meshes. A neural network was trained to learn a fea-
ture vector describing the anthropometric structure of the
3D meshes. The feature vector was employed to predict the
HRTFs for each vertical plane at once by considering the
spectral correlation and continuity across adjacent sampling
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grids and frequencies. They reported a mean SD of 3.78 dB
and improved results over a generic HRTF according to local-
ization metrics computed with an auditory model [81].

C. PERCEPTUAL FEEDBACK

Perceptual user feedback represents an alternative input type
to morphological data. Methods based on such input di-
rectly optimize the subjective auditory experience, as opposed
to learning the relationship between anatomy and HRTF.
Perceptual-based methods using ML often depend on ex-
tracting low-dimensional HRTF features. This is typically
achieved using autoencoders. Luo et al. [87] simulated a
virtual user—represented by a Gaussian process regression
model—localizing sounds given a query HRTF generated
from the low-dimensional space. Then, a recommendation
system estimated the best generated HRTF as the one that
minimizes the error between the target spatial positions and
those provided by the virtual user. They reported improved
SDR using an autoencoder over PCA for HRTF dimensional-
ity reduction. Yamamoto and Igarashi [88] collected subjects’
ratings about sound localization of pairs of HRTFs. The rat-
ings were used to obtain optimized personal weights between
a subject and each HRTF. These weights were used to gener-
ate individualized HRTFs through an autoencoder along with
latent variables and the desired space position. In a perceptual
test, the majority of the 20 recruited participants preferred the
estimated HRTF over the best-match HRTF in the dataset.
A limitation of the proposed approach is the duration of the
session to collect the user’s feedback, which could last up
to 30 minutes. Hwang et al. [89] extracted 12 PCs from the
median plane HRIRs of CIPIC. Subjects were then asked to
tune the first three PCs, which were used as input to predict
the remaining ones using MLR.

D. BINAURAL RECORDINGS
Some researchers estimated the individual HRTF based on
binaural recordings obtained by placing a pair of in-ear micro-
phones in the subject’s ear canals. This can be achieved using
earbuds with integrated microphones or similar devices. How-
ever, the relative position between the microphone and the
sound source must be known. These recordings are carried out
in-the-wild, i.e., in uncontrolled environments with arbitrary
sound sources. The uncontrolled nature of these recordings
distinguishes them from HRTF acoustic measurement in ane-
choic chambers. They also differ from HRTF upsampling,
where HRTFs with few sound source positions are interpo-
lated to obtain a higher spatial resolution. One advantage of
binaural recordings is that they encode the individual char-
acteristics of the HRTF. However, these recordings are not
properly HRTFs since spatial cues are mixed with the sound
source content and the room influence. Therefore, the con-
sidered HRTF individualization methods train ML models to
estimate the individual HRTF from the binaural recordings.
Zandi et al. [90] trained a CVAE to learn a latent repre-
sentation of HRTFs using the ITA dataset. Then, they asked
participants to hold a smartphone emitting a sine sweep for
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several positions around them. The binaural recordings were
used to fine-tune the decoder of the CVAE and generate in-
dividualized HRTFs. In a similar approach, Jayaram et al.
[91] used a modified version of UNet to predict the individ-
ual HRTF from the short-time Fourier transform of binaural
recordings. Their method required participants to move their
heads in the presence of a stationary arbitrary sound source.
They trained UNet with both real data measured from two
subjects, and synthesized data obtained by spatializing sound
sources with the HRTFs from the RIEC dataset [92]. Both
methods yielded acceptable results for both SD, which was
between 4 and 5 dB, and in localization experiments. How-
ever, these approaches exhibit some limitations, including the
difficulty of conducting the recordings in everyday environ-
ments, where the conditions may diverge from those tested
by the authors. Additionally, the measurement procedure re-
quired to the user is prone to errors.

V. INPUT PREPROCESSING

Data preprocessing is a crucial step to guarantee effective
training of ML models. Raw data may be noisy, incomplete,
heterogeneous, inconsistent, or contain irrelevant informa-
tion [52, Ch. 3]. This section is devoted to the anthropometry
preprocessing, which is the most prevalent input data type
for HRTF individualization. Anthropometry preprocessing
mostly involves feature scaling and feature selection tech-
niques. Preprocessing approaches for images include resolu-
tion scaling [76], [82], [83], data augmentation [76], [77] and
edge detection [76], [79]. Conversely, 3D scans preprocessing
include voxelization [83], [93] and resolution scaling [86].

A. FEATURE SCALING
Feature scaling entails rescaling the feature values to a dif-
ferent range. This operation is beneficial for several ML
algorithms, as it enables the comparison of features distributed
in different ranges. A frequently used technique is min-max
normalization, which entails rescaling the values to a fixed
range, typically between 0 and 1 [94], [95], [96], [97], [98],
[99], [100], [101], [102]:

_ X I’IllIl().C) ’ 5)

max(x) — min(x)

where x and x" are the original and the scaled feature, re-
spectively. In the HRTF individualization context, another
commonly employed method to bound values within [0, 1] is
based on the sigmoid function [74], [84], [103], [104], [105],
[106], [107]:

= (1 +e*%)_l, ©)

where 1 and o are the mean and the standard deviation of x,
respectively. Moreover, standardization is another widespread
technique, which transforms the feature vector to have zero
mean and unit variance: x' = (x — u)/o [60], [85], [108]. A
less common method is mean centering [73].
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B. FEATURE SELECTION

Several HRTF individualization studies adopted different ap-
proaches to remove irrelevant information from the input
features and avoid the curse of dimensionality. Whereas an-
thropometric feature selection is prevalent in this context,
some researchers have also explored dimensionality reduc-
tion techniques, such as PCA [72], [109], sparse PCA [73],
[110], autoencoders [104], and feature learning [77], [86].
Despite the multitude of studies dedicated to anthropometry
selection, there is currently no consensus on the optimal set of
parameters for HRTF individualization [27] [17, Sec. 7.1.2].
This topic has been investigated from various perspectives.
A particular focus of analysis has been the influence of the
pinna and its cavities on HRTF. Although the precise relation-
ship between pinna morphology and HRTF remains uncertain,
there is a general consensus that the concha and the fossa
triangularis are linked to the pinna spectral notches observed
in the HRTF [26], [64], [111]. In addition, these cavities play
an important role in elevation localization [112] and their
anthropometry significantly affects HRTF [27], [69], [113],
[114]. A number of studies have focused on other body parts,
such as the head shape and size, which are directly related to
ITD [28], [34] [17, Sec. 7.1.2] and ILD [115], [116].

The HRTF individualization studies adopted different ap-
proaches to select anthropometry. Most of them relied on
the CIPIC anthropometric specification, which allows us to
summarize their results. Specifically, we examined 17 studies
proposing a feature selection approach for CIPIC anthro-
pometry. Table A.2 of supplementary materials provides a
complete list of these studies. We also included studies that
were not identified through the PRISMA research, as they em-
ployed feature selection in conjunction with selection-based
methods for HRTF individualization [117], [118]. Then, we
excluded some of the studies analyzed in this survey since
they reused the results of existing approaches [107], [119],
selected parameters without an objective approach [70], [120],
or used parameters that did not belong to the CIPIC spec-
ification [102], [110], [121], [122]. It should be noted that
other anthropometry selection approaches not included in this
analysis do exist [44], [71], [123].

Despite the variety of feature selection methods, two
common steps are often considered. The first step entails
selecting parameters significantly related to the HRTF [100],
[117], [124], dimensionality reduced versions of HRTF ob-
tained with PCA [85], [113], [118], [125] or HOSVD [126],
[127], or other HRTF features such as ITD, ILD, and pinna
notches [128]. This relationship can be quantified through
a parameter-based correlation analysis [100], [124], [125],
[126], [127], [128], [129], or by computing the parameters’
importance with regression models such as MLR [85], [113],
[117], [118] and SVM [130]. The second step aims to re-
duce redundancy by removing parameters that are highly
correlated to each other. Anthropometry selection is usually
performed independently of the spatial position. Xu et al.
[125] compared global—one selection for all directions—
and local—one selection for each direction—approaches to
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anthropometry selection. For both approaches, they used a
weighted correlation between the anthropometry and the PC
weights of the HRTF for selection. The authors predicted the
PC weights with MLR obtaining a non-significant difference
in SD values between the two approaches, which were around
5dB.

Fig. 7 shows the frequency of parameter selection across
the 17 studies, revealing that certain parameters are more
frequently selected than others. Head width x| and head depth
x3 are the most frequently selected parameters among those
pertaining head and torso. This could be explained by the
influence of head morphology on ITD and ILD. However,
pinna parameters are more frequently selected than head and
torso parameters on average. The most frequently selected
parameter is the cavum concha width d3, confirming the im-
portance of concha morphology for HRTF. Other frequently
selected parameters include pinna height ds, cavum concha
height d;, pinna width dg, and fossa height d4. For a related
analysis of pinna anthropometry selection, refer to Ghorbal
etal. [27].

VI. OUTPUT
The HRTF individualization methods yield an estimated
personalized HRTF as output, although alternative represen-
tations of it may be considered. The majority of HRTF
individualization methods focused on the HRTF magnitude,
whereas phase and I'TD are rarely considered [82], [85], [107],
[131], [132]. Other methods predicted the HRIR so that the
phase modeling was not necessary [74], [75], [76], [89], [98],
[99], [109], [120], [129], [133], [134], [135], [136], [137].
Some methods focused on the DTF magnitude to conceal ir-
relevant information for the ML model [60], [72], [97], [119],
[124], [128], [130], [138], [139], [140]. A limited number of
methods concentrated on the PRTF. Rodriguez and Ramirez
[141] used MLR to predict the PC weights of PRTF from
pinna anthropometry. Then, they adjusted the pinna notch
frequencies of the estimated PRTF. Ko et al. [82] trained an
end-to-end CNN, called PRTFNet, to predict the magnitude
of compact PRTF representation from pinna range images.

Besides the use of alternative HRTF representations, the
output of ML models can be constrained to specific spatial
coordinates and frequency ranges to simplify the problem. For
example, some studies focused on the median plane to model
the monaural spectral cues affecting elevation perception [60],
[89], [126], [133], [139], [141], [142], [143], [144], [145],
[146]. Other works focused on the horizontal plane, whereas
the majority considered the full sphere around the subject.
With regard to frequency ranges, it is common to neglect the
low frequencies below:

e 200 Hz [84], [86], [97], [103], [104], [105], [108], [147],
[148],
500 Hz [79], [132], [135], [149],
1 kHz [70], [83], [121],
3 kHz [77], [150],
4 kHz [93].
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FIGURE 7. Frequency of the CIPIC anthropometric parameters selected across the 17 analyzed works.

In addition, some works neglected the higher frequencies
as they are marginal for sound localization [151]. The typical
highest considered frequencies are:

e 12 kHz[70], [83],

e [3kHz[121],

e 15 kHz [77], [84], [103], [105], [107], [132], [142],

[147], [148],
e 16 kHz [79], [93], [120], [135], [149], [150],
e 18 kHz [86], [104].

VII. OUTPUT PREPROCESSING
A. FEATURE SCALING
In the field of HRTF individualization, a common approach to
scaling the HRTF values is to compute their log-magnitude.
He et al. [95] suggested that the log-magnitude provides im-
proved performances over power [88] and no preprocessing
in predicting the individual HRTF using a sparse represen-
tation. Other feature scaling approaches include min-max
normalization [79], [84], [87], [97], [98], [99], [102], stan-
dardization [132], [152], and RMS normalization [130].
Preprocessing methods based on signal processing include
HRIR truncation [120], [136], also to isolate the pinna influ-
ence [143], [144], and frequency smoothing [83], [84], [103],
[104] which can be also based on auditory critical bands [130]
or an equivalent rectangular bandwidth (ERB) filter [86].
Alotaibi and Wickert [120] proposed to preprocess the HRIR
removing the ITD, and to restore it as a postprocessing step.

B. DIMENSIONALITY REDUCTION

HRTFs are characterized by a high dimensionality, typically
comprising more than 100 frequency bins. Consequently,
many HRTF individualization methods encompass dimen-
sionality reduction techniques to facilitate the training of ML
models. Fig. 5 shows the distribution of the dimensionality
reduction techniques used in the analyzed publications.

1) PCA

One of the earliest and most enduring dimensionality reduc-
tion algorithms is PCA. Kistler and Wightman [153] found
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that the first five PCs, which explained 90% of the variance,
yield a sound localization similar to the original HRTFE. Many
HRTF individualization studies selected a number of PCs to
explain 90% or more of the variance. However, the actual
number of PCs varied across the studies including 5 [131],
6 [102], [142], 7 [72], 8 [122], 10 [124], [128], [129], [134],
[138], [139], [152], 12 [89], [98], [119], 15 [121], 20 [141],
[150].

Some studies have compared the application of PCA to the
entire or grouped HRTF data. Xu et al. [152] reported an SD
improvement of 1.2 dB by applying the PCA independently
for each spatial direction compared to applying the PCA for
all spatial positions when predicting the HRTF magnitude
from anthropometry using MLR. Bomhardt et al. [121] re-
ported that the application of PCA on HRTFs grouped by
direction yielded a lower reconstruction error compared to the
ipsi- and contralateral grouping and the ungrouped condition
only when less than 20 PCs were considered. A variant of the
PCA is the spatial PCA (SPCA) [154], which is applied in
the spatial domain instead of the time or frequency domains.
SPCA decomposes the HRTF into a weighted combination
of spatial PCs (SPCs). Zhang et al. [85] employed SPCA
to decompose the HRTF magnitude into 200 SPCs and to
predict their weights from anthropometric parameters using
NNs. The same method was then employed in combination
with a distance-dependent HRTF model [155], and later re-
fined integrating numerical simulation [156]. Chen et al. [157]
applied PCA both in the spectrum and spatial domains in order
to reduce the reconstruction error.

Additional studies specifically investigated the influence
of various factors on HRTF compression using PCA. These
included the comparison between different HRTF spectrum
representations [158], [159], the application of PCA by jointly
handling the HRTFs of the left and right ears [160], and the
influence of other factors such as the input structure (signal or
space), domain (time or frequency), the HRTF smoothing, and
the HRTF dataset [161]. To assess the suitability of the PCA
for retaining the individual information of the HRTF, Fayek
et al. [132] trained a NN with one hidden layer to classify
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the subject based on the PCs’ weights of the HRTF. They
found that classification accuracy decreased as the number
of PCs decreased, achieving a test accuracy of 22% with
85% of the variance explained. Consequently, they suggested
that inter-subject variation in a set of HRTFs has a relatively
minor impact on the overall variance compared to the variance
between the spatial directions. Although this may suggest a
potential inappropriateness of PCA for HRTF individualiza-
tion, the observed low performances could be attributed to
other factors, such as the poor accuracy of the classifier. Thus,
further studies are necessary to confirm this hypothesis.

2) ICA

Another dimensionality reduction technique used in HRTF
individualization is independent component analysis (ICA).
Huang and Zhuang [99] employed ICA to reduce the HRTF
dimensionality to 18 independent components and estimated
them from anthropometry using support vector regression
(SVR). Wang and Chan [109] proposed a similar approach
using 2D common factor decomposition followed by ICA
for dimensionality reduction and used SVR as a regression
model. Further, Liu et al. [145] reduced the median plane
HRTF to ten independent components and predicted the ob-
tained weights through MLR from anthropometry. Similarly,
Liu et al. [146] used two independent components, and trained
three generalized regression neural networks (GRNN) based
on anthropometry of head, torso, and pinna, respectively.

3) TENSOR-BASED

Some researchers employed tensor generalizations of dimen-
sionality reduction techniques. These included singular value
decomposition (SVD), which is generalized to tensors by
higher-order SVD (HOSVD). Some studies suggested that
HOSVD yields lower SD than PCA in the individualization
of HRTF using MLR [149] and radial basis function neural
network (RBFNN) [126]. Similarly, Rothbucher et al. [138]
reported a slight improvement of SD using tensor-based tech-
niques such as HOSVD, two-dimensional PCA (2DPCA), and
generalized low rank approximations of matrices (GLRAM),
in comparison to standard PCA. Also, HOSVD and GLRAM
led to a higher reduction rate than PCA and 2DPCA. In a pre-
vious study, the authors reported that GLRAM and HOSVD
exhibited lower SD compared to PCA in the lone HRTF
dimensionality reduction task [162]. HOSVD has also been
used along with higher-order partial least squares (HOPLS) to
predict HRTF [127].

4) NON-NEGATIVE MATRIX FACTORIZATION

Tang et al. [100] used non-negative matrix factorization
(NMF) along with SVR to predict low-dimensional HRTFs
from anthropometry. The authors reported a mean SD of
4.7 dB compared to 5.1 dB obtained with MLR combined
with PCA [124]. However, these results were obtained eval-
uating the method for only one subject at four azimuths in the
horizontal plane.
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5) FILTER APPROXIMATION

Other less investigated approaches for HRTF dimensionality
reduction include those based on signal processing tech-
niques. Gupta et al. [133] employed Prony’s signal modeling
method to approximate the HRIR with a set of time delays
and resonant frequencies. Then, this set was predicted from a
linear combination of pinna anthropometric parameters using
MLR. The authors reported better localization performances
for the estimated HRTF compared to a non-individual HRTF.

6) SPHERICAL HARMONICS

Given the spherical nature of HRTFs, some researchers have
investigated the use of spherical harmonics (SH) for dimen-
sionality reduction. Xi et al. [105] used SH to combine CIPIC
and HUTUBS datasets. They predicted the SH coefficients
from anthropometry using a DNN and reported a mean SD
of 4.46 dB for CIPIC HRTFs, which was slightly lower than
existing approaches [84], [85], [163]. Further, Zhao et al.
[77] employed head and torso anthropometry and pinna image
features to train an NN predicting SH coefficients of HRTFs.
They reported a mean SD of 5.31 dB, representing an im-
provement over the average HRTF and a value similar to that
obtained by Zhi et al. [61].

7) AUTOENCODER

In one of the earliest studies using autoencoders with HRTFs,
Luo et al. [87] reported enhanced SDR values in compar-
ison to PCA, albeit with a subtle difference. The authors
used perceptual feedback as input similarly to Yamamoto and
Igarashi [88], who also trained an autoencoder to obtain an
HRTF generator. Later, the training of NNs to predict the
low-dimensional HRTF representation obtained with an au-
toencoder became a widespread approach. Chen et al. [84]
observed a reduction of SD by 0.5 dB on the horizontal
plane compared to a previous study which did not consider
dimensionality reduction [163]. Lu and Qi [108] trained a
user-independent DNN to predict the low-dimensional HRTFs
in the latent space obtained with an autoencoder. The model
was then fine-tuned with user-dependent anthropometry for
the purpose of individualization. Miccini and Spagnol [79]
trained variational autoencoders (VAE) on both pinna images
and HRTFs to train a DNN mapping the two latent spaces.
The VAE trained on HRTFs was conditioned on the spatial
coordinates. Yao et al. [104] used an autoencoder and a VAE
to reduce the dimensionality of the anthropometry and HRTF,
respectively. These latent representations were used to train
a DNN, which yielded an SD improvement of almost 0.5 dB
compared to PCA and SH for HRTF dimensionality reduction.
Zurale and Dubnov [164] proposed a vector quantized VAE
(VQ-VAE) for HRTF dimensionality reduction. Unlike VAEs,
a VQ-VAE incorporates a quantization phase between the
encoder and the decoder in which the latent space is quantized
into a fixed number of vectors. The VQ-VAE model yielded
lower SD for the HRTF reconstruction in comparison to both
PCA and a standard autoencoder.
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8) OTHER NON-LINEAR TECHNIQUES

Among non-linear dimensionality reduction techniques, Gri-
jalva et al. [147], [148] indicated that Isomap outperforms
PCA when using NNs to individualize HRTF from anthro-
pometry, reporting a mean SD of 4.76 dB in the horizontal
plane [147], and 4.6 dB for the full sphere [148]. The au-
thors adapted the graph construction of Isomap to incorporate
existing correlations among HRTFs. However, unlike PCA,
Isomap is not capable of projecting new points into the
low-dimensional space, although some approximations ex-
ist [165]. Studies dedicated to HRTF dimensionality reduction
reported that Isomap and local linear embedding (LLE) out-
performed PCA in the correlation with spatial direction [166]
and in localization accuracy [167].

VIil. ML MODELS

After data preprocessing, an ML model is trained to learn the
underlying relationship between the input and the output. As
previously mentioned, in HRTF individualization, regression
algorithms are selected, which represent a type of supervised
learning. The distribution of the ML models used in the ana-
lyzed publications is shown in Fig. 5.

A. LINEAR REGRESSION

Linear regression approaches are widespread, particularly in
early HRTF individualization methods (see Fig. 4). Given the
high-dimensional nature of HRTFs, multivariate linear regres-
sion (MLR) is the typical choice. The MLR model is rarely
trained to directly predict the raw HRTF magnitude values, al-
though some approaches do exist [143], [144]. Several studies
predicted PCs weights obtained from the HRTF [102], [110],
[121], [131], [152], [168], PRTF [141], DTF [72], [124],
[128], [130], [138], [139] and HRIR [129], [134]. Other HRTF
dimensionality reduction techniques used in conjunction with
MLR include HOSVD [127], [149] and ICA [145]. Chen et al.
[136] divided the HRIR into three segments, each correspond-
ing to the influence of a different body part: the head and
pinnae, the torso, and the knees. Then, they constructed a
distinct MLR model for each segment, using three distinct sets
of anthropometric parameters.

Given its simplicity, MLR has been found to lack the capac-
ity of adequately describe the complex relationship between
input data, usually anthropometry, and the HRTF. This is
demonstrated by the findings of studies that have employed
MLR as baseline conditions in comparison to non-linear
methods, which yielded superior performances [100], [101],
[137], [142].

B. SPARSE REPRESENTATION

Sparse representation, which is a further linear approach,
learns a sparse vector representing the anthropometry of the
test subject as a linear combination of the training anthropom-
etry. The same sparse vector is then directly applied to the
HRTF magnitude. Following this approach, Bilinski et al. [94]
reported lower SD than ridge regression and a non-individual
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HRTF, whereas the nearest HRTF in the training set achieved
only a slightly lower SD. He et al. [95] used sparse represen-
tation to predict HRTF magnitude, with a particular emphasis
on the impact of preprocessing and postprocessing operations
for HRTF. Zhu et al. [96] proposed a method for weighting the
anthropometric parameters in the sparse representation based
on their influence on HRTF magnitude. They obtained a mean
SD of 5.5 dB, which was lower than 1.8 dB compared to
other literature methods [59], [117], [169], but similar to the
unweighted approach.

Qi and Tao [97] questioned the underlying assumption of
previous works that the same sparse vector can be used for
both anthropometry and HRTF. Thus, they trained a DNN to
map the learned weights for anthropometry and HRTF. They
reported better objective and subjective performance com-
pared to classical sparse representation [94], [95]. Lu et al.
[73] reduced the dimensionality of morphological landmarks
with sparse PCA and subsequently used sparse representation
to select the best-match HRTF. The authors reported improved
SD compared to other selection-based approaches [59], [170],
especially between 0 and 8 kHz. Later, the authors proposed a
modified version of their approach employing PCA for HRTF
dimensionality reduction [171] resulting in lower SD values
compared to their previous work.

C. NEURAL NETWORKS

Neural networks (NNs) can overcome the limitations of linear
approaches. Hu et al. [119] proposed the first HRTF individu-
alization method based on a feedforward NN (FNN) with one
hidden layer predicting the PCs weights of horizontal plane
HRTF from anthropometry. Following studies employed a
single-layer FNN to predict the raw HRTF [101], [132], or
low-dimensional representations obtained with PCA [142],
spatial PCA [85], and Isomap [147], [148]. The number
of neurons in the hidden layer varied including 16 [119],
18 [142], 20 [101], [147], 35 [148], and 512 [132]. In light
of the recent proliferation of deep learning, several HRTF in-
dividualization studies proposed to use DNNG, i.e., NNs with
several hidden layers, to predict HRTF from anthropometry.
Nevertheless, in these studies, the depth of DNNs remained
contained, likely due to the limited size of HRTF training data.
The proposed DNN architectures included three [84], [105],
five [103], [104], [106], or seven [120] hidden layers. The
number of neurons for each layer included 40 [84], 48 [103],
64 [106] and 128 [104], [120]. DNNs were also used to
map low-dimensional representations of pinna depth images
to HRTFs [79].

Other types of NNs have been employed for HRTF in-
dividualization. Among recurrent neural networks (RNN),
rarely investigated in this field, Lee et al. [172] proposed
a bidirectional long short-term memory (LSTM) to predict
horizontal plane HRTF from anthropometry, although their
paper was not completely peer reviewed. Conversely, CNNs
have received considerable interest by HRTF individualization
studies. CNNs have been used to predict the HRTF from
anthropometry [107] and 3D head meshes [86]. Further, some
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works trained CNNs by combining anthropometry with pinna
images [76], [77], [82] or 3D pinna meshes [83]. Lu et al.
[74], [75] trained CNNSs to predict HRTF from a set of land-
marks placed on the torso, head, and pinnae, whereas Zandi
et al. [90] and Jayaram et al. [91] trained CNNs with binaural
recordings as input.

RBFNNs and GRNNs are a particular type of NN com-
monly employed for HRTF individualization. RBFNNs are
composed of a single hidden layer with a non-linear ra-
dial basis function (RBF) as the activation function. Given
their simplicity, RBFNNs are well-suited to HRTF datasets
given their limited sizes. RBFNNs were used to predict
low-dimensional HRTF obtained with PCA [157], [173] and
HOSVD [126], using anthropometry as input. GRNNs were
used to predict DTF on the median plane [60] and HRTF PC
weights on the horizontal plane [122]. Liu et al. [146] trained
three GRNNs for torso, head, and pinna to predict two ICA
components of median plane HRTF.

Recently, more complex NN architectures have been pro-
posed. Lu and Qi [108] trained an autoencoder to obtain
low-dimensional HRTF features, which were then predicted
from spatial coordinates using a user-independent model. The
model was then fine-tuned incorporating user-dependent in-
formation represented by anthropometry. The authors reported
amean SD improvement greater than 0.5 dB and improved lo-
calization performances compared to random HRTF and other
literature works [95], [150], [174]. Qiu et al. [175] proposed
a multi-stage model combining the modeling of global and
local spectrum features. First, they trained a LightGBM model
for each HRTF frequency, with anthropometry as input. Then,
they trained a transformer encoder to learn global spectrum
features from the previously predicted HRTFs. The authors
reported a mean SD of 4.54 dB, which was slightly lower than
the 4.79 dB obtained by replacing the transformer with a clas-
sical NN. Comparable SD values were found for LightGBM
alone and existing literature methods [156], [176]. Zhang et al.
[156] and Javeri et al. [93] proposed to integrate the principles
of HRTF numerical simulation approaches, such as the bound-
ary element method (BEM), into NNss.

D. SUPPORT VECTOR REGRESSION

Among regression algorithms, support vector regression
(SVR) has received considerable interest for HRTF individu-
alization. SVR with an RBF kernel has been employed to map
anthropometry to low-dimensional HRTFs in the horizontal
plane, obtained with PCA [98], ICA [99], and NMF [100].
SVR yielded improved SDR compared to a single-layer
NN [98], [99] and improved SD over linear regression [100].
Wang and Chan [109] proposed a joint optimization of SVR
to exploit the correlation between the HRTF dimensions. They
reported a mean SD of 4.6 dB, which was lower than only
0.3 dB over the standard SVR.

E. TREE-BASED MODELS
Decision trees and random forests have been less investi-
gated in the HRTF individualization field. Teng and Zhong
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[70] trained a random forest to predict the HRTF magni-
tude from anthropometry, but the model was evaluated at
only five directions. Qiu et al. [177] employed LightGBM,
a gradient boosting framework based on decision trees, to
predict HRTF from anthropometry. They reported a mean SD
of 2.3 dB, which was lower than existing approaches [76],
[156]. Later, the authors integrated LightGBM in a multi-stage
model [175]. Despite the limited interest, decision trees and
random forests could represent an effective approach and a
simpler alternative to DNNs. Angelucci et al. [137] compared
the efficacy of different ML models in predicting the HRIR
from anthropometry. These models included linear regression,
kernel regression with RBF kernel, SVM with RBF kernel, re-
gression tree, random forest, and DNN. The results indicated
that the latter three models exhibited lower error values.

F. REINFORCEMENT LEARNING

Reinforcement learning is an ML paradigm based on the ac-
tions taken by an intelligent agent in an environment with
the goal of maximizing a given reward [178]. Reinforcement
learning has rarely been applied to HRTF individualization, as
it is less suited to this task than supervised learning. Nambu
etal. [135] employed the actor-critic paradigm using a dummy
head HRIR as the initial HRIR. They reported that this ap-
proach resulted in improved localization on the horizontal
plane compared to the dummy-head HRIR.

IX. MODEL TRAINING AND VALIDATION

A. MANAGE HRTF STRUCTURE

HRTF individualization methods must address the complex
structure of HRTF data. HRTFs depend on multiple variables,
including the subject’s anatomy, the left and right ears, the
sound direction (azimuth and elevation), and the frequency
(time for HRIRs). Many ML models are unable to accommo-
date the multidimensional structure of HRTF data. To manage
the HRTF structure, two high-level approaches exist, which
are identified by the number of trained models.

e Single ML model: when using a single ML model, one
or more HRTF variables are employed as input features
in conjunction with the actual features (e.g., anthro-
pometry). For example, the direction can be used as an
additional input feature of a model predicting a mul-
tidimensional output for the given direction [74], [82],
[104], [120], [132], [148], [150]. The multidimensional
output is represented by the HRTF frequency bins, the
HRIR time sample, or their low-dimensional represen-
tation. In a similar manner, the frequency bin can be
utilized as an input feature to predict the SH coefficients
of the HRTF [77]. Moreover, both direction and fre-
quency can be used as additional input features to ML
models that predict a unidimensional output [101]. A
single model can be used even without additional input
features by employing ML models that predict a 2D
matrix as output, which represents the HRTF values for
each frequency bin and direction [83], [107]. Similarly,
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when considering the full sphere HRTF, the ML model
can yield a 3D output with dimensions corresponding to
frequency, azimuth, and elevation [86].
® Multiple ML models: some studies trained a separate
model for each direction to estimate a multidimen-
sional output which represents the frequency bins [60],
[75], [76], [84], [103], [119], [141], [142]. Alternatively,
one model is trained for each frequency bin, with the
model’s multidimensional output corresponding to the
directions [85]. A further approach is to train one model
for each frequency bin, with the direction used as an
additional input feature [175], [177] or vice-versa [70].
Angelucci et al. [137] conducted a comparative analysis of
the two approaches: (a) training a one ML model for each
direction and (b) training a single ML model with azimuth and
elevation as additional input features. Results varied accord-
ing to the ML algorithms. However, the authors concluded
that, in general, the approach based on a single model for each
direction performed better in terms of objective metrics.

B. DATASET SPLITTING

In the ML pipeline, the employed dataset is split into different
partitions, namely training, validation, and test sets, used at
different stages of the pipeline. The training set is used to train
the ML model to predict the desired output in response to the
input. The validation set is composed of data that were not
used in the training step. Its purpose is to provide an unbiased
evaluation of the models trained with different configurations
of the hyperparameters. In the studies analyzed in this survey,
the validation set has rarely been considered [74], [83], [85],
[101], [105], [132], [175]. The test set is employed to assess
the extent to which the final ML model is able to generalize
on unseen data.

A number of strategies exist for dataset splitting into differ-
ent partitions. The simplest one is the holdout method, which
involves performing a single split. The holdout method is the
most frequent approach in HRTF individualization studies.
The typical percentages of data retained for the test set are
approximately:

5% [73], [79], [100], [124], [157],

10% [70], [101], [122], [143], [144], [173],

15% [82], [87], [97], [98], [108], [120], [142], [145],
20% [85], [99], [104], [107], [109], [119], [137], [138],
[177].

An alternative approach to holdout is represented by cross-
validation (CV) techniques, which evaluate the model’s per-
formance with multiple partitions of the dataset. The use of
CV techniques typically provides a more thorough evaluation
than holdout, as they serve to prevent overfitting and selection
bias. A common CV technique is k-fold CV which involves
the splitting of the dataset into k equal-sized partitions. For
each of the k trained models, one partition is designated as
the test set, whereas the remaining k — 1 partitions constitute
the training set. Common values of k in the analyzed HRTF
individualization studies are 4 [60], 5 [83], [148] and 7 [126],
[147] and 10 [86], [150]. Nevertheless, the most prevalent CV

VOLUME 6, 2025

approach is the leave-one-out CV (LOOCYV), which can be
regarded as a particular case of k-fold CV, where k equals
the number of instances in the dataset [76], [77], [84], [88],
[90], [94], [95], [96], [102], [103], [105], [132], [146], [149].
Moreover, some studies utilized CV without providing details
regarding the specific methodology [131], [168], [179].

C. HYPERPARAMETERS TUNING

The training of ML models is influenced by their hyperpa-
rameters, which control the learning process, in contrast to
the model’s parameters learned during such process. Hyper-
parameter tuning, or optimization, is the procedure of finding
the optimal values of the model’s hyperparameters for a given
problem. In the analyzed HRTF individualization methods,
hyperparameter tuning is often overlooked, and the used hy-
perparameter values are omitted. Some studied conducted an
informal tuning of the hyperparameters without a specific
strategy [83], [150]. In several studies employing a single-
layer FNN, the number of hidden nodes is varied and the value
that minimizes the error on the validation set is selected [148].
However, the majority of these studies omit the set of data
used to compute such error [99], [119], [142], [147]. Lu et al.
[75] tuned the dropout rate for a CNN by identifying the value
that minimized the error on the validation set. Some studies
tuned the hyperparameters based on error minimization during
CV, but without specifying the employed search method [94],
[96], [97], [101], [127]. Other studies conducted a grid search
to tune the hyperparameters but did not provide details on
the validation strategy for the models trained with different
configurations of the hyperparameters [70], [146]. Qiu et al.
[177] employed Bayesian optimization with k-fold CV to tune
the parameters of a LightGBM model.

D. DATASET COMBINATION

HRTF datasets are usually small-sized due to the difficul-
ties of HRTF acoustic measurement. Therefore, ML models
for HRTF individualization can be improved by combining
multiple datasets. This can be beneficial for several reasons,
including the availability of larger sets of data to train the
model. However, the HRTF measurement procedures adopted
for different datasets result in considerable acoustic differ-
ences [180], [181]. This has the potential to enhance the
generalization capacity of ML models, yet their adequate
training is challenging, as cross-dataset differences must first
be mitigated. This allows to obtain harmonized HRTF data
and prevent the training of biased ML models.

Despite several works devoted to the mitigation of cross-
dataset differences exist in the literature [182], [183], [184],
[185], few HRTF individualization studies have adopted one
of these approaches to date. Lu et al. [73], [171] evaluated the
proposed HRTF individualization method separately on the
CIPIC and Chinese pilots’ dataset, rather than performing a
joint training and evaluation. Lu et al. [74] trained and eval-
uated their HRTF individualization method with the Chinese
pilots’ dataset. Then, they reported an evaluation of the trained
model on the HRTFs of two subjects from the SYMARE
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dataset. Xi et al. [105] performed an evaluation of the pro-
posed HRTF individualization method combining the CIPIC
and HUTUBS datasets. These datasets were harmonized by
aligning the mean and standard deviation of the HUTUBS
HRTFs magnitude to those of the CIPIC dataset. Lu and Qi
[108] used the PKU&IOA and the CIPIC datasets to train
their model for HRTF individualization. The only reported
operation to harmonize the datasets is resampling to the same
sample rate.

X. EVALUATION METRICS

Following the training of the ML model, its performance is
quantified by computing some evaluation metrics. In the con-
text of HRTF individualization, the type of evaluation can be
objective, perceptual, or based on auditory models.

A. OBJECTIVE METRICS

The evaluation through objective metrics quantifies the error
introduced by the HRTF estimation with respect to the in-
dividual HRTF. Typically, such error is computed between
the magnitude spectra of the target and the predicted HRTFs.
Although several metrics exist, spectral distortion (SD) is the
prevalent one. Other less common metrics include:

® root mean square error (RMSE) in addition to SD [76],
[97], [106], [107], [108] or alone [137],

¢ signal-to-distortion ratio (SDR) [87], [98], [99], [127],

® mean absolute error (MAE) [101],
mean squared error (MSE) [88], also in percent-
age [128], [129], [134], [139],
inter-subject spectral difference (ISSD) [121],
spectral distance error (SDE) [83],

R? [72],
Itakura—Saito divergence [93].

In the field of HRTF individualization, it is a common
practice to compare the objective results obtained with the
proposed method against other conditions to demonstrate the
improved results achieved by the former. These control con-
ditions include:

e variations to the proposed approach [77], [79], [82],
[84], [85], [104], [109], [125], [126], [138], [147], [148],
[149], [150], [175],

e other approaches proposed in the literature [73], [74],
[76], [77], [82], [83], [86], [97], [105], [136], [152],
[156], [171], [173], [175],

e different ML models [75], [98], [99], [100], [101], [127],
[137], [142],

e pumerical simulation [156],

® baseline conditions, e.g., average [76], [77], [83], ran-
dom [130], and generic [82], [83], [85], [107], [145]
HRTFs.

However, only a minority of these studies conducted a
statistical analysis to assess the significance of the reported
improvements [73], [103], [125], [142], [148], [152], [156],
[171].

Although objective metrics provide a clear quantification
of the fit of the estimated HRTF magnitude to the individual
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one, the relationship between such metrics and perceptual
outcomes has not yet been demonstrated. Tommasini et al.
[142] questioned the suitability of SD for evaluating the lo-
calization accuracy on the median plane. To this end, they
extracted the central frequencies and the amplitudes of the
pinna peaks and notches since their relationship with the lo-
calization on the median plane has been demonstrated [24],
[62], [186], [187], [188], [189]. A comparison of linear re-
gression with an NN in an HRTF individualization task found
that the NN exhibits lower SD. However, they found similar
errors on the predicted peaks and notches, large enough to
have a perceptual impact. Thus, they suggested that SD is an
inadequate metric for assessing the localization accuracy of
an estimated HRTF. To obtain a similar indication of the lo-
calization accuracy through objective metrics, Bomhardt et al.
[121] reported the correlation coefficient between the peaks
and notches extracted from the individual and the estimated
HRTFs.

B. PERCEPTUAL EXPERIMENTS

HRTF individualization should ultimately yield HRTFs that
provide a perceptual experience as close as possible to the
individual HRTF. Consequently, a perceptual evaluation of
HRTF individualization methods is more appropriate than the
computation of objective metrics. Despite that, the majority
of the examined studies reported only objective evaluation,
and those that conduct perceptual experiments rarely exceed
ten participants, with few exceptions [85], [88]. Further, there
is currently no standard protocol for perceptually evaluating
the estimated HRTFs. However, a recent review discussed the
methodology and the metrics to evaluate HRTF perceptual
performances [190].

In perceptual experiments reported in HRTF individualiza-
tion studies, participants are presented with auditory stimuli
delivered through headphones. These stimuli are spatialized
in different directions using the individualized HRTF and
other HRTFs as control conditions. The participant provides
feedback, typically in the form of perceived source direction,
which is then used to compute performance metrics. Such
experiments usually concentrate on the lone horizontal [74],
[76], [90], [102], [106], [107], [119], [124], [127], [131],
[134], [136], [173] or median planes [89], [133], [145], [157].
Some studies evaluated separately multiple planes [85] or the
full sphere [91], [97], also at different distances [108]. The
stimulus is spatialized in a number of directions that varies
from 6 [133], [145] to 24 [124], whereas a greater number
is rarely considered [108]. Then, each direction can be con-
sidered once [90], [102], [124], [136] or repeated up to ten
times [108]. A noise signal of approximately one second [74],
[89], [131], [145], [173] or noise bursts [72], [85], [107],
[119], [124], [127], [133], [134] are employed as auditory
stimuli. Other sound sources such as speech and music are less
frequently considered [76], [88], [90], [108], [179]. In some
experiments, a training session is conducted by presenting the
participant with the stimulus spatialized in known directions.
This training is performed in a dedicated session prior to the
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actual experiment [72], [91], [97], [107], [108], [134] or in re-
peated sessions preceding each experimental run [85], [119],
[124]. Once the participants have listened to the spatialized
stimulus, they are asked to provide feedback on the direction
of arrival of the sound. To collect such feedback, a graphical
user interface with a circle for angle selection is commonly
adopted [85], [89], [90], [107], [119], [134], [136]. Other
methods include the angle selection from a list [74], [102] or
the use of a laser pen to measure the angle pointed by the
participant [145].

In perceptual experiments, the auditory stimulus is spatial-
ized with different HRTF conditions. One condition is the
individualized HRTF obtained with the proposed methods,
eventually with some variations [76], [85], [107]. The in-
dividual HRTF can be used as a control condition, which
represents the target performance to be achieved [89], [91],
[127], [131], [133], [134]. Notably, none of the analyzed
studies used real sound sources as a control condition. Con-
versely, a generic HRTF is frequently used as a baseline
control condition. A generic HRTF can be represented by
an HRTF selected from a dataset [90], [108], [119], [124],
an average HRTF [76], or a dummy head HRTF, such as
KEMAR [74], [85], [89], [91], [102], [107], [136], [145],
[157], [173] or B&K [133]. Furthermore, other literature ap-
proaches can be used for comparison [74], [97], [106], [107],
[108].

To assess the localization performances, some metrics can
be computed from the participant responses. These metrics
include:

e absolute difference between the target and perceived di-

rections [85], [89], [91], [102], [133], [145],

e ratio of correctly localized stimuli [74], [76], [90], [97],
[102], [107], [108], [119], [124], [131], [134], [136],
[157],

e front-back confusion ratio [72], [76], [85], [89], [91],
[97], [107], [108], [117], [119], [124], [131], [134],
[136], [145], [157],

® up-down confusion ratio [85], [97], [108], [145].

The distance confusion ratio can be considered in experi-
ments involving different distances [108]. None of the ana-
lyzed studies considered the inside-the-head localization ratio,
which measures the perceived externalization. Other studies
have overlooked localization and have instead asked partici-
pants to rate the similarity between the estimated and individ-
ual HRTFs [106], [127], or the preference between the esti-
mated and a non-individual HRTF [88], [173]. Further, Wang
et al. [102] conducted a test in which participants were aware
of the azimuth of the spatialized stimulus and were asked to
rate the obviousness of such an angle. Whereas most experi-
ments relied on audio-only stimuli, Lu and Qi [108] proposed
an experiment with visual stimuli as well represented by a
virtual reality (VR) scene in which realistic sound sources
were rendered in 6 degrees of freedom. The authors reported
an improved correct localization ratio over an audio-only
experiment.
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C. AUDITORY MODELS

Conducting perceptual experiments presents several practical
challenges. Therefore, some HRTF individualization studies
have relied on auditory models, i.e., computational models of
the auditory system that can be used to estimate the localiza-
tion responses of a subject with a given HRTF. Most of the
employed auditory models are those included in the auditory
modeling toolbox (AMT) [191]. Among the AMT models, the
one proposed by Baumgartner et al. [81] has been used to
predict localization performances in the median plane [60],
[79], [85], [86]. Models for localization on the horizontal
plane have been developed as well [192], [193]. The main
limitation of using computational auditory models in the eval-
uation stage is related to the disjoint prediction of horizontal
and vertical localization. However, a Bayesian spherical sound
localization model has recently been proposed by Barumerli
et al. [194]. The model jointly evaluates the two dimensions
and has already been used to assess the similarity between
predicted HRTFs and their measured counterparts [93].

XI. DISCUSSION

The preceding analysis of HRTF individualization based
on ML revealed several commonalities across different ap-
proaches, despite considerable variability. Throughout the
survey, we have endeavored to delineate an evolutionary tra-
jectory across ML-based HRTF individualization methods.
For example, the approaches based on NNs followed a nearly
linear path over time, beginning with simple single-layer
FNNs and progressing to deep NNs with increasing size and
more sophisticated architectures. However, in many cases,
the body of work on ML-based HRTF individualization does
not follow a distinct evolution or progressive development.
Instead, it comprises various studies that each adopts a specific
approach or technique. Consequently, we grouped these refer-
ences together to highlight the diffusion of a certain technique,
rather than to present a chronological or methodological evo-
lution between studies, given that such an evolution does not
exist. This represents a potential manifestation of fragmenta-
tion and lack of standardization in the use of ML for HRTF
individualization. This is in contrast to other fields related to
audio and ML, which have been subjected to a well-structured
standardization process, also encompassing scientific chal-
lenges. These challenges interest topics such as acoustic scene
classification, e.g. DCASE?, acoustic source localization and
tracking, e.g. LOCATA?, room acoustics characterization, e.g.
ACE?, and speech enhancement for 3D audio, e.g. L3DAS’.
It is our hope that the organization of the literature provided
in this survey will encourage future standardization actions in
the ML-based HRTF individualization field.

“https://dcase.community/
Shttps://www.locata.Ims.tf.fau.de/
Shttp://www.ee.ic.ac.uk/naylor/ACEweb/
"https://www.13das.com/index.html
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A. HRTF DATASETS

With regard to data, our findings indicate that the majority
of studies relies on the CIPIC dataset, as illustrated in Fig. 5.
However, Fig. 4 shows that this tendency has diminished in the
last years, in favor of more recent and larger HRTF datasets.
A comprehensive assessment of the CIPIC’s suitability for
the training of HRTF individualization methods has not yet
been conducted. The limited size of CIPIC (45 subjects) and
similar HRTF datasets renders the findings based on these
data less generalizable. The training of ML models, in par-
ticular DNNs, would be favored by larger datasets, thereby
preventing overfitting, which has been scarcely investigated
in the HRTF literature. In addition, larger datasets would also
contribute to the spread in the HRTF individualization field of
the recent developments in ML. Examples of this include the
latest deep learning architectures, such as transformers [107],
[175] and few-shot learning [195], [196]. Furthermore, the
explainable artificial intelligence (XAI) paradigm [197], [198]
should be considered to foster the comprehension of the in-
terrelationship between human anatomy and HRTE. In this
regard, datasets of numerically simulated HRTFs comprising
approximately one thousand subjects [31], [39] could serve
as a first step toward more generalized ML models. How-
ever, simulated HRTFs exhibit perceptual differences with
acoustically measured ones [37, Sec. 3.3] [43], [44]. In ad-
dition, ML methods dealing with limited data could be further
investigated, such as transfer learning [77], [199] and data
augmentation [76], [77], [79]. An extensive analysis of an
HRTF individualization method should encompass multiple
HRTF datasets for training and evaluation, in order to over-
come the limitations of the single datasets. This is of particular
importance in the HRTF field where the datasets are limited in
size and the differences in the acoustic measurement across
the datasets are significant [180], [181]. These differences
are caused by (a) the employed equipment, (b) the mea-
surement conditions (e.g., subject standing or seating, room
characteristics, temperature, and humidity), (c) the considered
spatial coordinates, (d) the reflection from the measurement
system, and (e) the postprocessing. Recently, Pauwels and
Picinali [200] found that these differences can be identified
by ML algorithms. This topic is directly related to the re-
peatability of HRTF measurement, which is compromised
by a number of factors. These include the placement of the
in-ear microphones, the background noise, the accidental sub-
ject’s movements and misalignment [180], [201], [202], [203].
The repeatability issue has also been observed for numer-
ically simulated HRTFs [204]. Regarding this topic, some
researchers investigated the datasets merging and harmoniza-
tion by mitigating their spectral differences [183], [185] or
standardizing the HRIR’s sample rate and length, and ob-
taining a common spatial spherical grid finding the shared
angles [184] or via interpolation [182]. Additionally, toolkits
that facilitate the management and preprocessing of different
HRTF datasets for an ML pipeline have been proposed [205].
Despite that, HRTF individualization studies have rarely
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addressed the topic of datasets merging so far (see Sec. IX.D).
In addition to the technical perspective, other differentiating
aspects between HRTF datasets should be considered, such
as the subjects’ characteristics (e.g., sex, ethnicity, age) [73].
The scarce heterogeneity of the subpopulations represented
in such datasets prevents the development of fair artificial
intelligence (AI).

B. ANTHROPOMETRY
The analysis of the input data types revealed that the majority
of the studies are based on the CIPIC anthropometric param-
eters, as illustrated in Fig. 5. This choice is likely driven by
the availability of these parameters in the CIPIC dataset and
several other HRTF datasets [35], [36], [38], [39], [66], [206],
[207], [208], which include anthropometry measured follow-
ing CIPIC specification, as shown in Table 1 and in Table
A.1 of the supplementary materials. Despite the prevalence
of CIPIC parameters in the literature, the relevance and the
comprehensiveness of such parameters for HRTF have been
subject to debate [27], [69]. For instance, the CIPIC spec-
ification fails to sufficiently describe the fossa triangularis,
despite its influence on HRTF has been demonstrated [64],
[69]. Therefore, in the literature, some novel anthropometric
parameters have been proposed to overcome the limitations
of CIPIC specification [37], [39], [69], [70], [71]. Further
investigation is needed to determine a set of anthropometric
parameters that exhaustively describe the relationship be-
tween anatomy and HRTF, which is crucial for improving
anthropometry-based HRTF individualization methods.
Furthermore, anthropometry-based methods should con-
sider the inherent limitations of this input data type, in
addition to those of the CIPIC specification. Anthropometric
specifications should be defined in a more precise manner,
rather than just relying on 2D sketches that may result in am-
biguous measurement points. The lack of rigorous definitions
impedes the replication of such measurements by other re-
searchers and may result in errors that significantly affect the
HRTF estimation [17, Sec. 7.5]. Anthropometry-based studies
typically circumvent such repeatability issues by exclusively
relying on anthropometric data included in the datasets. Thus,
no additional anthropometric measurements are conducted on
new subjects to evaluate the proposed HRTF individualization
method. Further, as with HRTF acoustic recording, the mea-
surement of anthropometry entails time-consuming sessions
and experienced personnel, albeit the required equipment is
generally less expensive. Thus, although the HRTF recording
is yet more impractical than the anthropometric measurement,
the latter is far from being accessible in end-user applications.
This issue could be addressed by methods for the automatic
extraction of anthropometric parameters [56], [57], [58], [59],
[60], [61]. Alternative proposals of relevant landmarks such
as pinna contours [209] or a bendy bone armature [210] can
also promote reproducible research once supported by robust
automatic extraction methods.
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FIGURE 8. Distributions of the SD values reported in the analyzed HRTF individualization studies grouped by ML model. The SD of the reference
conditions for generic and numerically simulated HRTFs are also shown (horizontal dashed lines).

C. EVALUATION OF INDIVIDUALIZED HRTFS

1) SD ANALYSIS

Another topic worth discussing is the evaluation methodolo-
gies of the HRTFs estimated by the proposed individualization
methods. The majority of the analyzed publications consider
exclusively objective evaluation. A rigorous and systematic
comparison of the results reported in the analyzed studies
is challenging to achieve due to the absence of a standard
evaluation protocol. In most cases, the mean SD across di-
rections, frequencies, and subjects of the predicted HRTF in
comparison to the individual one is reported, yet some studies
omit this information. The SD is often computed for the entire
spectrum, although it is recommended to exclude the lowest
(below 100 Hz) and highest (above 20 kHz) frequencies from
the analysis, as the measurement equipment is less accurate
in these bands [17, Sec. 7.5]. Thus, some studies reduced the
frequency range considered for individualization, sometimes
even further than the aforementioned limits, intending to focus
on specific body parts or discard the frequencies irrelevant for
localization (see Section VI). However, there is no common
strategy to select such a frequency range. Further, the spatial
coordinates under consideration vary. For instance, some stud-
ies focus on the horizontal or median planes, which makes it
more challenging to compare different approaches.

Despite the discussed dissimilarities, in this survey, we pro-
vide a qualitative analysis of the publications reporting the
mean SD obtained by evaluating the proposed HRTF individ-
ualization methods. A total of 46 out of 76 publications were
identified as eligible for this analysis. Fig. 8 shows the SD
distributions for these publications, grouped by the employed
ML model. Two reference SD conditions are also reported
to facilitate the interpretation of SD values. The first one is
represented by the SD between a measured HRTF and the
corresponding numerical simulation. We set this reference
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to 2 dB corresponding to the SD up to 18 kHz, obtained
for HRTFs simulated using finite difference time domain
(FDTD) on a 3D submillimeter mesh [211]. The second refer-
ence condition is represented by the SD between a measured
HRTF and a generic one measured on a dummy head. We
set this reference to 6.6 dB corresponding to the mean SD
obtained comparing measured CIPIC HRTFs and KEMAR
HRTFs with small [85] and large [107] pinnae. Although
direct comparisons between different studies are difficult, we
notice from the SD distributions that methods employing NN-
based approaches tend to exhibit lower SD compared to other
approaches such as linear regression and sparse representa-
tion. Tree-based models and SVR also yield promising results,
although they have been employed in only a limited number of
studies. From Fig. 8, we noticed a couple of SD values consid-
erably lower than the rest of the literature. Son and Choi [106]
reported a mean SD of 1.44 dB, but this value was computed
for only two azimuth angles on the horizontal plane. Qiu et al.
[177] reported a mean SD of 2.3 dB, computed on the full
sphere using LightGBM. The authors hypothesized that the
low SD is attributable to the efficacy of LightGBM in prevent-
ing overfitting. Nevertheless, further studies are necessary to
reproduce the reported results and to confirm the effectiveness
of LightGBM for HRTF individualization. The interpretation
of these results is currently hindered by the lack of standard-
ization in the field, which makes it challenging to draw a
fair comparison with the state-of-the-art. This involves aspects
such as the absence of common reference performances from
state-of-the-art approaches, and the limited use of validation
approaches like CV, which provide a more accurate estimate
of how the ML models will generalize on unknown data.
In addition, the practice of publicly releasing code reposi-
tories and trained models has been adopted by only a few
authors [150], [176]. This practice should become established
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in future studies in favor of the open science paradigm, which
is currently scarcely embraced in the HRTF research field.

Scientific challenges can represent a tentative approach to
a common and open methodology for evaluating HRTFs. In
such challenges, the approaches proposed by researchers un-
dergo a shared benchmark using standardized metrics. The
Listener Acoustic Personalization (LAP) challenge8 is an
example of such a community effort to develop a shared
platform for the evaluation of personalized spatial audio tech-
nologies. In the first edition, the challenge focused on merging
different HRTF datasets and spatially upsampling HRTFs.
However, the organizers, some of whom are also authors, have
included HRTF individualization as a natural challenge on the
roadmap for future editions.

2) LIMITATIONS OF OBIJECTIVE METRICS

The exclusive reliance on objective metrics to evaluate in-
dividualized HRTFs is a substantial limitation, given the
inherently perceptual nature of HRTFs. There is evidence
in the literature that SD is not straightforwardly related to
perceptual cues such as the localization ones [142]. A com-
prehensive assessment of the performances of the predicted
HRTFs necessitates perceptual experiments which, however,
have only been conducted in a limited number of studies.
These studies typically reported improved localization accu-
racy of the proposed method over non-individual HRTFs or
other methods from the literature, yet inferior to the individ-
ual HRTF, though statistical analyses are sporadic [17, Sec.
7.5] [15]. To date, no study has demonstrated to provide es-
timated HRTFs that are perceptually indistinguishable from
individual HRTFs. Given the impracticality of conducting
localization tests, alternative approaches to perceptual exper-
iments could be considered. Auditory models represent the
prevalent alternative, although some NN-based metrics that
capture localization perception have been proposed [212].

3) BEYOND LOCALIZATION EXPERIMENTS

The improved localization accuracy demonstrated by es-
timated HRTFs in comparison to the non-individual ones
represents an encouraging result towards the employment of
personalized HRTFs by end-users. However, the extent to
which such improved performances will result in a superior
spatial audio experience is contingent upon the specific end-
user application. To this end, future research should consider
perceptual aspects beyond mere localization, including ex-
ternalization, tone color, crispiness, immersion, realism, and
speech/music perception [11], [12], [44], [213], [214], [215]
[37, Sec. 3.3]. For example, the perceived realism of the
sound sources can be addressed by criteria such as authen-
ticity [23], plausibility [216], transfer-plausibility [217], and
co-immersion [218]. Moreover, more complex experiments
are necessary to assess the performances of the individualized
HRTFs in ecological virtual environments that encompass a

8https://www.sonicom.eu/lap-challenge/
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multitude of factors [219], such as visual stimuli [108]. In this
regard, the experimental settings could investigate the various
levels of the reality-virtuality continuum [220], ranging from
pure virtual auditory environments to audio augmented reality
(AAR) [221] or virtuality (AAV) [222].

Future research should also investigate the role of HRTF
personalization in conjunction with other facets of spatial au-
dio contributing to a more realistic simulation. The existing
literature provides evidence that metrics such as localization
error, reversal rates, and externalization are influenced by
HRTF as well as head tracking, HpTF, reverberation, and di-
vergence between real and virtual listening environments [9],
[223], [224], [225], [226], [227] [17, Ch. 8,11,12,13]. It also
important to note that adequate hearing training contributes
to improving the localization accuracy with non-individual
HRTFs [228], [229], [230], [231], [232], a phenomenon
known as HRTF accommodation [233].

XIl. CONCLUSION
This survey systematically categorized and examined the
ML-based HRTF individualization methods reported in the
literature. The methods were categorized according to the
typical steps involved in the ML workflow, i.e., dataset, input
and output data, preprocessing, ML model, and evaluation.
The analysis revealed the prevalent approaches for each step,
which include CIPIC as the dataset, anthropometry as input,
HRTF magnitude as output, possibly PCA for HRTF prepro-
cessing, MLR or NNs as ML model, and SD for evaluation.
Subsequently, we discussed the main gaps existing in the
literature which could comprise topics of future studies, i.e.
1) the limitations of anthropometry-based methods,
2) the reported performances, which are still inferior to the
individual HRTFs,
3) the scarce applications of recent ML developments, in-
cluding XAlI,
4) the lack of a standardized evaluation protocol, and
5) the infrequent investigation of perceptual metrics, espe-
cially in the context of ecologically-valid experimental
settings, which encompass multiple aspects of spatial
audio beyond HRTF individualization.
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