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Abstract

A glottal model based on physical constraints is proposed. The model describes the vocal fold as a simple oscillator, i.e. a damped
mass-spring system. The oscillator is coupled with a nonlinear block, accounting for fold interaction with the airflow. The nonlinear
block is modelled as a regressor-based functional with weights to be identified, and a pitch-synchronous identification procedure
is outlined. The model is used to analyse voiced sounds from normal and from pathological voices, and the application of the
proposed analysis procedure to voice quality assessment is discussed. 2002 IPEM. Published by Elsevier Science Ltd. All
rights reserved.
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1. Introduction

Many of the acoustic and perceptual features of an
individual’s voice are believed to depend on specific
characteristics of the quasi-periodic excitation signal
(glottal flow waveform) provided by the vocal folds. Dif-
ferent approaches have been adopted for the modelling
of the glottal flow, the most important ones being the
parametrization by analytical functions [1] and the
physiological modelling of the glottis. The use of para-
metric and physiological models of vocal emission has
been proposed for a wide range of applications, namely
speech synthesis, speech coding and compression, and
voice quality analysis and assessment [2–4].

The first physiological model that attempted to rep-
resent the vocal folds vibration by means of a mass-
spring analogy was proposed by Flanagan and Landgraf
in 1968 [5]. It is made of a single spring-mass oscillator
driven by airflow from the lungs. Although such a simple
system with one degree of freedom cannot accurately
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simulate the fine details of the functioning of the glottis,
it is able to capture the basic mechanisms that initiate
self-sustained oscillations of a pressure-controlled valve
[6]. Due to low computational loads, one-mass models
are used by many authors in articulatory speech synthe-
sizers (see [7]).

However, the model by Flanagan and Landgraf [5]
is able to produce self-sustained oscillations only when
interfaced with an inertive vocal tract load. The reason
is that the system is not able to reproduce the vertical
movement of the vocal fold tissue that accompanies the
main lateral movement [8,9]. This feature, often referred
to as vertical phase difference, has the important role of
producing different glottal shapes within a glottal flow
cycle and provides a mean to generate a driving force
which is asymmetrical within the cycle. If the driving
force in the closing phase is lower than the driving force
in the opening phase (i.e., the force is dependent on the
displacement velocity), a positive flow of energy from
the airstream to the tissue can be realized, and a flow-
induced sustained oscillation can be achieved [8].

Among the many methods that have been proposed to
take into account the driving force asymmetry, the two-
mass model proposed by Ishizaka and Flanagan (IF) [10]
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is the most widely known: the IF model represents each
of the vocal folds as a pair of damped mass-spring sys-
tems coupled to each other. However, also the IF model
(and in general multi-mass lumped models) is derived
using crude approximations in the mechanical, acoustical
and fluid dynamic modelling. As noted by Villain et al.
[11], elementary mechanical constraints on the physio-
logical problem are completely neglected: it is assumed
that the elastic structure is fixed to a rigid wall, while
in reality a significant radiation of surface waves from
the throat can be noticed when voiced sounds are pro-
duced. Another limitation is concerned with the glottal
closure: glottal areas are assumed to be rectangular in
the IF model. As a consequence, closure of the glottis
occurs in an abrupt manner and this introduces additional
energy at high frequencies. In natural signals, a smoother
glottal closure is usually observed (for example, strobo-
scopic measurements often show zipper-like movements
of the glottal area during the closing phase).

In this paper we propose a lumped-mass modelling
approach which is suited for parametric identification
from real data. The model is made of two main parts, a
linear mass-spring system which describes the vocal
folds as a harmonic oscillator, and a nonlinear block
which accounts for the interaction between glottal flow,
glottal pressure, and position of the vocal folds [12]. The
one-mass paradigm is adopted due to its simplicity and
its low-dimensional parameter set, and the model is pro-
vided with the necessary modifications in order to make
it suitable for voice analysis/identification purposes.

The proposed model is then used for the analysis and
assessment of voice quality, including the detection and
classification of voice pathologies. Voice quality assess-
ment is traditionally based on subjective perceptual rat-
ings which is considered, still today, the only reasonable
way to classify certain types of voice disorders. The
objective assessment of voice, however, remains an open
problem that calls for reliable analysis tools and algor-
ithms to aid the clinicians in the diagnosis.

Acoustical analysis based on modern signal pro-
cessing techniques is becoming popular due to its quanti-
tative and noninvasive nature [13,14]. Many researchers
propose to assess perceptual voice quality using a set of
parameters derived from analysis of the radiated pressure
signal. Examples are time-domain measures such as jitter
(variation between successive fundamental periods) and
shimmer (variation between magnitudes in successive
fundamental periods), and frequency-domain measures
such as the spectral slope or spectral flatness of the
inverse filtered residue [14,15]. However, all of these
parameters depend exclusively on features of the signals,
while no assumptions are made about the physiology of
the source. We suggest here that the information gath-
ered from simple physically-informed models of the
glottis, such as the one proposed in this paper, can add
valuable information when combined with the set of tra-

ditional cues, and can be helpful in the detection and
classification of voice pathologies.

The rest of the paper is organized as follows. In sec-
tion 2.1, a review of the methods for glottal flow esti-
mation from a measured speech signal is presented. A
physically-informed model is proposed in section 2.2,
and section 2.3 outlines the approach to parametric
identification. In section 3, the use of the model as an
analysis tool is proposed and the results of the analysis
on normal and pathological voices are discussed. The
conclusions are presented in section 4.

2. Physically-informed model

2.1. Glottal flow estimation

Voiced speech is produced by excitation of the vocal
tract system with the quasi-periodic vibrations of the
vocal folds at the glottis (the voice source). Most typi-
cally, the voice source signal cannot be measured
directly, whereas the only measurable signal is the out-
put from a speaker’s mouth (i.e., the radiated pressure).
Therefore, one fundamental task in many speech analysis
and modelling approaches is the accurate estimation of
the voice source, and its separation from the effects due
to the vocal tract. This estimation allows precise deter-
mination of voice source features such as the glottal flow
waveform, the glottis opening and closing instants, etc.

Our approach to voice source modelling assumes that,
given a flow waveform from a steady portion of a voiced
sound, the parameters of the model under study can be
adapted so to reproduce the same waveform. A second
simplifying assumption is that there is approximately no
interaction between the source and the vocal tract.
Hence, the modelling procedure is made of two sequen-
tial steps, the first being the estimate of the glottal flow
from the radiated pressure signal, and the second being
the fitting of the model to the resulting flow signal.

The most common techniques rely on linear prediction
coding schemes (LPC). These methods estimate the
vocal tract filter, and provide the source signal (or
residual) by inverse filtering the radiated pressure signal
with the estimated tract filter. However, the vocal tract
characteristics change within a pitch period because of
the opening and closing of the glottis: therefore the
determination of the poles of the tract filter is often car-
ried out by a covariance LP analysis restricted to the
closed glottis period [16]. The remainder of this section
describes this procedure, which is used in the following
to estimate glottal flow waveforms from radiated press-
ure waveforms of voiced utterances.

The method requires an initial estimate of the closing
glottis instants (CGI). A rough estimate is provided by
the peaks in the residual error of a pitch-asynchronous
autocorrelation LP analysis. Once a CGI is chosen, a
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pitch-synchronous covariance LP analysis is used, which
starts at time instant CGI+1 and is limited to the closed-
phase, and estimates the all-pole vocal tract filter. This
filter should model the formant structure of the speech
signal, but the resulting polynomial often exhibits poles
in excess, that do not contribute to any formant. For this
reason, an improved all-pole filter is constructed by
finding the roots of the original LP polynomial and dis-
carding the roots that correspond to resonance fre-
quencies below 250 Hz, and the ones with bandwidth
above 500 Hz. The inverse of this improved filter is used
in turn to obtain the derivative of the glottal flow wave-
form (note that this approach amounts to modelling the
lip radiation effect with a differentiator filter). Inte-
gration of this latter waveform then provides the esti-
mated glottal flow. Since the first CGI estimate is not
always accurate, a small number of covariance LP analy-
sis centred around the CGI estimate are usually perfor-
med, and the best result is then selected on the basis of
the residual characteristics.

2.2. The glottis model

The glottis model proposed here is based on the
lumped-mass models described in [5,10]. These are
made of two main functional blocks. The first one rep-
resents the mechanical behaviour of the vocal folds: each
fold is described by means of one or two masses, which
are connected to the fold body by springs and dissipative
elements, and oscillate driven by the pressure distri-
bution at the glottis. As such, this block is modelled as
a quasi-linear differential equation. The resonance fre-
quencies of the oscillators determine some significant
features of the glottal signal, such as the pitch and the
open quotient.

The second block is highly nonlinear and represents
the coupling between the vocal fold motion, the glottal
flow, and the glottal pressure distribution. Using very
crude approximations (e.g., quasi-steadiness of the flow),
Ishizaka and Flanagan [10] derive the nonlinear equa-
tions that describe the pressure drops and recoveries
along the glottis. These depend upon the displacement
of the vocal fold, which in turn is determined by the
glottal pressure: as a consequence, the two blocks are
coupled in a feedback loop.

Many refinements have been proposed to these mod-
els, in which the physical behaviour of the glottis is
described in finer details. This approach typically results
in more realistic but at the same time more complicated
models. The opposite approach is taken here: the overall
model structure is retained, but both the linear and non-
linear blocks are drastically simplified by dropping
physical information. In the remainder of this section the
model is described in the digital domain.

The linear block is modelled as the simplest oscillat-
ing system, i.e. a second-order filter Hres(z), which

Fig. 1. Parametric model of the glottis with physical constraints. Hres

is a simple resonant filter, tuned on the pitch of the voiced signal,
fNL(x1,x2,pl) is a nonlinear function, ug is the glottal flow signal, x1 and
x2 are respectively the output and the delayed version of the output,
and pl is the lung pressure. A delay z�1 is inserted in the loop in order
to make it computable in a signal processing environment.

relates the vocal fold displacement x1 to the glottal flow
ug. The transfer function can be written as

Hres(z) � b0 / (1 � a1z�1 � a2z�2), (1)

where b0 is a gain factor and the coefficients ai deter-
mine the resonance frequency f0 and the 3-dB bandwidth
�f of the filter. Note that the filter Hres is the digital
equivalent of a mechanical system in which a mass is
connected to a linear spring and a damping element. In
this sense Eq. (1) describes a 1-mass model analogous
to the one described in [5]. The output x1(k) of Hres rep-
resents the fold displacement. A second displacement
variable, x2(k) � x1(k�1), is derived as a delayed ver-
sion of the input x1(k). This term provides an additional
degree of freedom to the system and roughly simulates
a vertical phase difference along the vocal fold tissue.

The second block is a nonlinear map fNL that models
the interaction between vocal fold motion, flow, and
pressure. Given the lung pressure pl, and the state (x1,x2)
of the linear filter Hres, the mapping fNL(x1,x2,pl) returns
the flow ug. This is taken as a driving signal for the
oscillator Hres. The final structure of the model is the one
given in Fig. 1. Note that very similar block schemes
can be used to describe the models proposed in [5,10],
although the internal structures of the blocks are differ-
ent.

The nonlinear map fNL is modelled with a regressor-
based functional:

fNL(x1,x2,pl) � w0 � �M
i � 1

wiyi(x1,x2,pl) (2)

where {yi(x1,x2,pl)}
M
i � 1

is a set of M regressors of the

input data and {wi}
M
i � 1

are the corresponding weights to
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be identified. The choice of the regressor set can be made
in several ways. Local models, such as gaussian func-
tions or any other radial basis function, are often used.
This approach leads to a model called Radial Basis
Function Network (RBFN) [17], used in the field of time
series analysis and modelling. The use of a polynomial
expansion of the input leads to a class of NARMAX
models [18], known in the fields of system identification
and control. Alternatively, the regressors can be selected
on the basis of physical considerations.

We choose here to select a small number of terms
from a polynomial expansion of the input. The choice of
these terms was made empirically, by fitting the model to
a training data set for each new added term, and retaining
only those terms that significantly improved the identi-
fication results. It was found that a small number of poly-
nomial terms, not exceeding ten, is usually sufficient to
provide the required accuracy of the identification. The
set of regressors selected in this case was:

y1(x1,x2,pl) � x1·pl y4(x1,x2,pl) � x2 / (x1 � �)

y2(x1,x2,pl) � x3
1 y5(x1,x2,pl) � x2

1 / (x2 � �)

y3(x1,x2,pl) � 1/(x1 � �) y6(x1,x2,pl) � x1·x2

(3)

where � is a constant offset that prevents the denomi-
nator from assuming a zero value.

2.3. Pitch-synchronous parametric identification

The following problem is now addressed: given a tar-
get glottal flow waveform ūg (which is estimated,
together with the vocal tract filter, using the inverse fil-
tering technique described in section 2.1) the parameters
of the model have to be identified so that the output ug

from the nonlinear block fits the target as closely as
possible.

System identification is achieved in three steps.

1. For each period p � 1,…,P of the glottal flow ūg, the
starting time np and the period length Np (in samples)
are defined as the CGIs and the difference between
the two successive CGIs, respectively. The lung
pressure pl is given a value which is constant for each
period and proportional to the energy of ūg within
the period.

2. The linear block Hres is driven using ūg, and its output
is computed. The resonance frequency f0 is chosen
interactively, in such a way that the open and closed
phase for the output match those of the target flow
ūg. The bandwidth �f is chosen so that the quality
factor Q of Hres matches a reference value Q0 deduced
from physical parameters: the values used in [10] for
masses, spring constants, and dissipation elements
provide a value Q0�10. Once the parameters f0 and
�f are chosen, the output x1(k) and the state x2(k) from

the oscillator are computed. From Fig. 1, it can be
seen that, if the flow segment is ug(k), k �
np � 1,…,n � Np, then x1(k) � hres∗ug(k�1), k �
np � 1,…,n � Np and x2(k) � x1(k�1), where the

operator ∗ denotes convolution. Our analysis focuses
on the reconstruction of the complementary relation,
i.e. the mapping from x1 and x2 back to ug, via the
function fNL.

3. At this point, both the input (x1,x2,pl) and the target
output ūg of the nonlinear block are available. Then
the weights in Eq. (2) are estimated using the follow-
ing pitch-synchronous nonlinear identification step.

For each period p � 1,…,P, two training data sets are
defined as

Tūg
(p) � [ūg(np � 1),ūg(np � 2),…,ūg(np � Np)], (4)

Tx(p) � �y1(np) % y1(np � Np�1)

� � �

y6(np) % y6(np � Np�1)�, (5)

where yi(k) � yi(x1(k),x2(k),pl(k)), i.e.yi(k) is the ith
regressor at the discrete time k. The data sets in Eqs (4)
and (5) are used to train the regressors in fNL. Specifi-
cally, the identification of the weights w(p) requires the
solution of the matrix system

w(p)�1

Tx(p)
� � Tūg

(p), (6)

where 1 � [1,…,1] is a row vector of length Np. The
LS solution of Eq. (6) is known to be

w(p) � Tūg
(p)�1

Tx(p)
�+

, (7)

where the symbol + denotes the pseudo-inverse of a
matrix [17]. Pseudo-inversion provides a method to
invert non-square matrices, and it is required in this case
since the number of regressors is typically less than the
number of samples in one period of the flow waveform.

The model and the identification procedure described
above have been successfully used to obtain modifi-
cations of basic sound parameters, such as pitch and
voice quality, mainly for voice synthesis and processing
purposes [12]. These applications exploit the ability of
the identified model to self oscillate and generate auton-
omously a given glottal flow waveform. As this is a non-
linear iterated system, stability is critical and accurate
identification is a key point for the performance.

This work explores the suitability of this model for a
different purpose, namely the analysis of voiced sounds
for voice quality assessment and glottis pathology detec-
tion. It should be highlighted that stability is not a critical
point when the model is used for analysis purposes: in
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this case the model is not required to autonomously gen-
erate the glottal pulse, but it is instead used to obtain a
new representation of the flow, suitable for the analysis
and assessment.

3. Analysis of voiced sounds and voice quality
assessment: testing and results

3.1. Testing the identification procedure

An example of the analysis procedure described in the
previous sections is shown in Fig. 2. Two voiced frames
from two different speakers were used to estimate the
glottal flow (first and second plot from top) and to fit
the model (third and fourth plots from top). The rep-
resentation of the fNL input–output time series, called
phase portrait, is a common way to represent the quali-
tative nonlinear dynamics for low-dimensional dynami-
cal systems, and is the basis for a class of nonlinear sys-
tem identification models. A similar approach to the
representation of the dynamics of vocal emission with a
focus on speech and vocal disorders analysis can be
found in [4,19].

Fig. 2. Result of the model-based analysis for two voice samples, namely (left to right) a male uttering the vowel /a/ at a pitch of 177 Hz, and
the same vowel uttered at a pitch of 154 Hz by a patient subjected to partial cordectomy. The plots show (from top to bottom) the estimated glottal
flow (normalized to an arbitrary scale), the differentiated glottal flow, the projection of the phase portrait on the (x1, ug) plane, and the time-varying
parameters wi(p), of the nonlinear function fNL (log-scale).

Usually, the phase portraits are directly derived from
the time series representing the radiated pressure, thus
retaining a mixed information in which the contribution
of the vocal tract, the glottis, and their interaction, are
indistinguishable. With the approach here described, the
use of a physically informed model permits to localize
the observation of the time series with respect to the
nonlinear excitation mechanism, thus limiting the influ-
ence of other elements. One direct consequence is that
the phase portrait is more representative of the dynamics
of the glottis, since it is independent from the vocal tract
and from the pitch of the signal taken into account by the
filter Hres. The first column of plots shows the analysis of
a fragment of a voiced sound from a healthy speaker
uttering the vowel /a/. The values of the parameters w(p),
strictly tied to the shape of the phase portrait, are asso-
ciated with the waveform of the glottal flow, while their
relative changes in time are associated with the stability
of the waveform. The second column of plots shows a
different speaker uttering the vowel /a/ at constant pitch.
In this case, a pathological voice was considered from
a patient with unilateral cordectomy. The time variation
of the model parameters well reflects the period shape
instability of the glottal flow waveform.
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3.2. Acoustic analysis for pathological voice
assessment

To test the potentialities of the analysis based on
physiological models, a number of high quality voice
samples were collected from healthy subjects and from
dysphonic patients. The pathologies taken into account
were mainly partial cordectomy and unilateral paralysis.
Utterances of sustained vowel /a/ were recorded with a
Sliure SM 48 dynamic microphone and a Kay CSL sys-
tem, at a sampling rate of 11,025 Hz.

A set of nine different voices is analysed in the
remainder of this section. From the generic ith voice
(i � 1,…,9), a suitable stationary portion of the signal
was selected and analysed. For each subject, a frame of
five periods of the signal was considered (Pi � 5, i �
1,…,9). Each period of the estimated glottal flow,

obtained by inverse filtering, was normalized in magni-
tude to focus the observation on the shape variations
(consequently, shimmer information was extracted at
this stage). The time-varying pitch was used to set, at
each period, the resonance frequency of the filter Hres(z).
Then, the training data sets Tug,i(p) and Tx,i(p), p �
1…Pi, were computed by feeding Hres(z) with the glottal

flow estimate. The training sets were finally used to com-
pute the time-varying parameters w(p) for each case.

The result of the analysis of nine selected cases is
shown in Fig. 3. The plots on the left represent the phase
portraits as in Fig. 2. A qualitative inspection suggests

Fig. 3. Analysis of a set of sustained vowels from normal and pathological voices. The plots show the projection of the phase portraits on the
(x1, ug) plane. All plots refer to five periods of the flow waveform. Cases (a), (b) and (c) are utterances from three healthy male subjects. Cases
(d)–(i) refer to subjects with vocal fold pathologies (specifically, (d)–(e) to partial cordectomy, and (f)–(i) to unilateral paralysis).

that a classification could be based on two main features,
namely the shape and the stability of the orbits in the
phase space.

To further investigate the behaviour of the w para-
meters, the matrices Wi (each one having dimension
(M � 1) × Pi, i.e.7 × 5) were collected into a global
matrix W � [W1�W2�…�W9], and performed a principal
component analysis based on the singular value
decomposition of the matrix W [20]. Here, the principal
component analysis has the purpose of reducing the
dimensionality of the matrix W, to better visualize and
evaluate the data.

The eigenvalues matrix computed in the decompo-
sition confirmed that two principal axes are sufficient to
explain over 90% of the overall variance in the data,
thus allowing to represent the data on a two-dimensional
space (as in the right plot of Fig. 2). A point in this
space represents a single period of the glottal flow wav-
eform, and different positions represent different period
shapes. An utterance is then represented in this space by
a set of points, as in Fig. 4 (the points that are periods
of the same utterance are represented in the figure by
the same marker and clustered together).

By observing the overall distribution of the points and
comparing the clusters with the corresponding phase
portraits on the left, one can deduce that utterances from
the healthy voices considered are characterized by clus-
ters made of points tight together (denoting high stability
of the period shape). On the other hand, pathological
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Fig. 4. Clustering of the data in a two-dimensional space after
reduction of the dimensionality by principal component analysis. Each
point in the plot corresponds to a glottal waveform period. Data from
the same subjects are represented with the same marker.

voices, characterized by period shape instability, are rep-
resented by spread out clusters. The proximity of differ-
ent clusters in the two-dimensional space denotes simi-
larity of waveforms, as for cases (b) and (h) in Fig. 4.

It is useful to compare the approach proposed here to
other existing voice quality assessment methods based
on acoustic features. Measures of perturbation of the
waveform shape, usually obtained by correlation of pairs
of adjacent waveform periods, are often combined to
other measures of periodicity perturbations and of the
noise component. An example of such representation is
the ‘hoarseness diagram’ , which is based on three acous-
tic measures that assess different aspects of signal
periodicity (jitter, shimmer, and mean period correlation,
MWC) and on one measuring the noise component
(glottal to noise excitation ratio, GNE) [15,21]. The data
can be plotted in a 2-dimensional space in which the x-
axis is the irregularity component and the y-axis is the
noise component. Typical hoarseness diagrams for
pathological voices are characterized by the coverage of
large areas, whereas normal voices are clustered in given
regions, namely lower left, corresponding to low values
of both the noise and the irregularity component.

Whether the method proposed here could present
some advantages over this and other representations, is
a matter of assessing if it can supply any additional
information other than a measure of periodicity pertur-
bation. As noticed above, the position of a voice sample
in the two-dimensional space is determined in some way
by the shape of the waveform period: this suggests that
the position of the clusters can be used to distinguish
healthy voices from pathological ones, or to detect and
classify certain pathologies.

However, as shown in Figs. 3 and 4, there was no
evidence in this experiment that healthy voices and

pathological voices occupy mutually exclusive regions,
nor that the same pathologies occupy the same regions
in the two-dimensional space. We believe that further
work on a larger data set could be helpful in understand-
ing these aspects. Moreover, a better understanding of
the meaning of the principal components resulting from
the dimensionality reduction is also important. These
should be related to some gross shape features of the
waveform period, such as the closed phase duration (if
any), the slope of the opening and closing phases, or
others.

4. Conclusions and future work

In this paper we presented a physically-informed
model loosely based on the traditional scheme of a
mechanical oscillator driven by the glottal pressure,
whose structure is adequate for the fitting of real data.
We then proposed an analysis procedure that can be used
in combination with the model, and we discussed the
possibility of using this procedure to assist in the assess-
ment of voice quality and in the detection of vocal fold
pathologies. Future work is foreseen to improve the
model, in order to take into account important features
such as the interaction between the glottis and the vocal
tract, and to refine the investigation of voice pathology
detection and classification. The analysis of enlarged sets
of pathological cases should better clarify, for example,
if voices from subjects affected by certain pathologies
can be said to occupy the same region of the low-dimen-
sional space, offering in this case a reliable tool for path-
ology detection and classification.
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