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ABSTRACT
The matching of reverberation features between real sound sources
and virtual ones is a key task in Audio Augmented Reality. An
adequate matching provides a proper auditory immersion to the
user. In this paper, we propose a method for reverb matching. The
method automatically optimizes the parameters of an artificial re-
verberator to match a target Room Impulse Response (RIR). We
used a Bayesian optimization procedure using a Gaussian Process
as a prior distribution. This procedure iteratively tunes the artificial
reverberator parameters to match its output, i.e. the approximated
RIR, with the target one. The matching between the approximation
and the target is implemented with a perceptually motivated loss
function. Before this parameters optimization, the target early re-
flections are approximated through an autoregressive model. The
method has been implemented with two artificial reverberation al-
gorithms: a Feedback Delay Network (FDN) and an implementation
of the Schroeder-Moorer reverberator (Freeverb). We evaluated the
method with a listening test to assess the similarity with target
reverberation. Our method yields overall statistically significant
higher scores with respect to other anchor conditions. Further, sub-
jective differences between FDN and Freeverb are not significant.

CCS CONCEPTS
• Human-centered computing → Mixed / augmented reality;
Sound-based input / output; Auditory feedback; • Computing
methodologies→ Gaussian processes; • Applied computing
→ Sound and music computing.
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1 INTRODUCTION
1.1 Problem overview
In Audio Augmented Reality (AAR), virtual sound sources are
blended in an existing acoustic environmentwith real sound sources
and the user is unable to distinguish them. To provide a proper
immersion in the soundscape, the virtual sources should share the
same acoustic features of the real ones. The virtual and real blending
is achieved by simulating the reverberation of the real environment,
a task known as reverb matching.

A reverberant environment can be modeled as Linear and Time-
Invariant System (LTI), thus it is described by its Room Impulse
Response (RIR). So, the convolution between the RIR and an input
audio signal applies the environment reverberation to the input.
Convolution techniques are popular in such fields as music produc-
tion or film audio post-production, as they allow for the simulation
of a specific listening space, but are computationally expensive
for long RIRs, and lack flexibility in control [30]. Physical room
modeling techniques (e.g. image-source and ray tracing) provide
a highly controllable solution and accurate results [23]. However,
physical approaches rely on the knowledge of the environment
properties (e.g. shape, size, objects presence, materials). Thus, phys-
ical approaches are impractical in real-world application and in
AAR scenarios where real-time is needed.

In real-time contexts, Digital Artificial Reverberators (DARs here-
after) based on delay networks and low-order filters represent an
efficient and controllable solution for reverb matching [30]. The
DAR’s reverberation effect is controlled by a set of Digital Artificial
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Reverberator Parameters (DARPs). So, the DARPs can be tuned in or-
der to match the reverberation of a target environment. The DARPs
tuning can be manually performed by an expert audio engineer,
but this is a time-consuming task. Therefore, several algorithmic
solutions have been studied, typically relying on genetic algorithms
or deep learning. In general, the reverb matching is performed by
optimizing the DARPs to minimize a loss function between a target
reverberation and the one produced by the DAR.

1.2 Method overview
We propose a reverb matching method that automatically tunes the
parameters of a DAR to match a target RIR. The method’s core is
a Bayesian optimization procedure using a Gaussian process as a
prior. We define a perceptual loss function between the target RIR
and the DAR’s output. The approximation procedure iteratively
optimizes the DARPs to minimize the perceptual loss function.

The employed DARs are limited to late reverberation only. Thus,
before the DARPs tuning, we applied a separate method to match
the target RIR early reflections. First, the early reflections are sepa-
rated from the late reverberation using a custom procedure based
on the spectral difference between time frames extracted from the
target RIR. Then an autoregressive model is fitted on the early reflec-
tions and it is applied on the input audio signal to be reverberated.

We evaluated our method through a MUSHRA test. In the test,
we compared the matching procedure performed with two DARs: a
Feedback Delay Network (FDN) and Freeverb. Further, we included
an hidden reference and two anchors in the comparison. The test
was composed of 18 trials (six target RIRs and three audio stimuli).

We provide supplementary materials in a dedicated web page1
about the MUSHRA test and the objective evaluation.

2 RELATEDWORK
Several reverb matching methods have been proposed in the litera-
ture. The automatic tuning of DARPs is a common approach. We
provide here an overview of the main works in this field.

Heise et al. [16] proposed an early work of automatic DARPs
adjustment. The authors tuned the parameters of a reverb plug-in
to fit a target RIR. They used a genetic algorithm comparing four
optimization strategies. The genetic algorithm minimized as loss
function the Euclidean distance between Mel-Frequency Cepstral
Coefficients (MFCCs) vectors. In a MUSHRA-type test, their method
yields comparable results with other reverberation conditions.

Some works exploited the internal structure of a specific DAR
in order to perform the DARPs tuning. The most used DARs are
from the class of FDNs. The FDN parameters are tuned to match
the late reverberation part of a target RIR (a genetic algorithm is
commonly used). Then, the direct path and early reflections are ren-
dered separately. Coggin and Pirkle [6] tuned the DARPs of a FDN
using a fitness function based on power envelope [5]. The early
reflections were rendered through convolution with the target RIR.
The method was evaluated through a listening test. Convincing
results were found for small room reverb, whereas performances
decreased with increasing room size. Another example with FDN is
proposed in [26]. The authors generated a dataset of shoebox RIRs,
and tuned the FDN parameters to match the target RIR through
1https://zenodo.org/record/6854824

a genetic algorithm employing a loss function based on reverber-
ation time and clarity index matching. Finally, a SVM regression
model was trained to predict the FDN parameters given the room
parameters. However, no listening test is reported.

Recent solutions make use of deep learning. In [29], two neu-
ral networks are proposed. The first one maps noisy reverberant
recordings into a low-dimensional embedding vector characteriz-
ing the acoustic environment. Then, a waveform-to-waveform net-
work, conditioned on the embeddings, transforms the input audio
to match the acoustic features of the given embeddings. Listening
tests showed improvements over baseline methods, especially in
noisy cases. Another example based on deep learning is proposed
in [21] where a neural network involving Bidirectional Gated Recur-
rent Units (BGRUs) was designed to perform two tasks, regression
of DARPs and classification of reverberation presets, using as input
any reverberated audio signal. A MUSHRA test compared the mod-
els (DARPs regression and preset classification), DARPs manually
tuned by an audio engineer, and random DARPs. DARPs regression
yielded results comparable with the audio engineer ones, while the
classification performed slightly worse.

The Differentiable Digital Signal Processing (DDSP) [8] introduc-
tion has been a significant landmark in this field. DDSP allows
the integration of classic DSP elements in deep learning frame-
works. That means audio effects parameters are directly tuned via
backpropagation. DDSP approaches are sometimes referred to as
differentiable artificial reverberation when applied to DARs. In [18],
a DARPs estimation network is connected to a differentiable artifi-
cial reverberator to allow the end-to-end training. So, the DARPs
are tuned to match the input reverberation. The input can be either
a RIR or a reverberated speech track. While any DAR could be
used in their network, the authors selectively derived differentiable
version of FDN and Filtered Velvet Noise (FVN). They showed that
their model can capture the target reverberation accurately in terms
of reverberation time, direct-to-reverberant ratio and clarity.

3 DATA
For the sake of clarity all the data employed in our work are de-
scribed in this section. In particular, we present the data used in
the reverb matching method (matching audio signal) and in the
evaluation phase (target RIRs, test audio stimuli). The sampling
frequency 𝑓𝑠 is 44.1 kHz for all audio signals.

3.1 Target RIRs
We evaluated the method proposed in this work on six target RIRs
to be matched. Target RIRs were chosen to be both recorded and
artificial responses, in order to assess the generality of the proposed
approach. Specifically, four of the chosen RIRs are real binaural
recordings from four different locations (auditorium hall, outdoors
courtyard, recording studio and small room). The RIRs have been
recorded with a Neumann KU-100 dummy head positioned in front
of the emitter. Another RIR is generated with CATT-Acoustic soft-
ware [4] simulating a living room. The remaining RIR has been
generated feeding the REVelation VST3 plug-in by Steinberg2 with
an impulse. We set a plate reverb preset on this plug-in.

2https://steinberg.help/cubase_plugin_reference/v9/en/_shared/topics/plug_ref/
revelation_r.html
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3.2 Test audio stimuli
Three audio stimuli were selected to be used in a subsequent listen-
ing test. They were chosen to have different temporal and spectral
characteristics, in order to test the DARs in a variety of conditions.
All stimuli are monophonic dry recordings. Two were retrieved
from a performance of “Take Five” by Paul Desmond: one is a drums
track (kick, snare and ride) while the second one is a saxophone
solo track, both 11 s long. The remaining stimulus is an English
speech recording of a female speaker [14], and is 12 s long.

3.3 Matching phase audio signal
During the reverb matching phase, the DAR generates a reverber-
ated signal that is compared with the target. To generate this signal,
we fed the DAR with a sweep 𝑠 instead of an impulse. We also
convolved the target with 𝑠 to allow the comparison with the re-
verberated sweep. In particular,𝑠 is an ascending logarithmic sine
sweep ranging from 20 Hz to 20 kHz. The sweep 𝑠 was 3 s long.

We selected a sweep in order to achieve better performances in
the matching of the dry-wet ratio parameter. Since the matching
loss function splits the signal in time frames, using an impulse, most
of the dry-wet information is in the first frame. Given that the loss
function is averaged over the frames, this information would exert
a limited influence on the loss. Conversely, using a sweep, dry-wet
information is present in all time frames. As a consequence, this
information has more influence on the loss function.

4 AUTOMATIC REVERB MATCHING
4.1 Method workflow
An overview on the method workflow is shown in Fig. 1.

1) The target RIR early reflections are so modelled:
a) The boundary point between early reflections and late

reverberation is automatically estimated.
b) An autoregressive model is fitted on the mid-side encoded

early reflections giving the equalization coefficients 𝐴𝑚,𝑠 .
2) The target RIR 𝑟 is convolved with the sweep 𝑠 giving 𝑠𝑟 .
3) The sweep 𝑠 is equalized with the mid component equaliza-

tion coefficients 𝐴𝑚 computed at step 1 giving 𝑠𝐴 .
4) In the DARPs optimization, the DAR reverberates 𝑠𝐴 as equal-

ized at step 3 to match the target RIR 𝑠𝑟 as convolved at step 2.
The optimized DARPs 𝑃 are obtained.

5) The input dry audio mid component 𝑥𝑚 is equalized with
the coefficients 𝐴𝑚 giving 𝑥𝐴 .

6) The signal 𝑥𝐴 is reverberated with the DARPs 𝑃 giving 𝑥𝐴 .
7) The reverberated audio side component 𝑥𝑠

𝐴
is equalized with

the side component coefficients 𝐴𝑠 giving 𝑦.
8) The audio signal 𝑦 is the final output simulating the rever-

beration effect of 𝑟 on the input signal 𝑥 .

4.2 Early reflections equalization
Since the employed DARs simulate only late reverberation, we de-
cided to model early reflections separately. We propose an early
reflection modelling approach based on equalization matching
through an autoregressive model. This approach only considers
spectral effects and not the temporal structure of early reflections.

In order to mitigate the difference given by the overall coloration
of the target RIR early reflections, we decided to equalize the input
signal 𝑥 with an estimate of such coloration, represented by the mid
component coefficients 𝐴𝑚 . Furthermore, the side component of
the reverberated signal 𝑥𝐴 was equalized with the side component
coefficients𝐴𝑠 . This was done to mimic also the stereophonic image
coloration provided by the early reflections.

Before this matching, we designed a custom method to estimate
the boundary point between early reflections and late reverberation
from the target RIR 𝑟 . The description of this method follows.

The mid-side encoded target RIR 𝑟 is split in multiple time frames
with increasing size. The 𝑛-th frame ranges from 𝑟 [0] to 𝑟 [𝑛𝛿 − 1],
where 𝛿 = 512 is the base frame size. A cosine fade-out is applied
at the end of each frame. For each frame, we fit an autoregressive
model with the Yule-Walker method. We set the model order 𝑝 to
2⌊(2 + 𝑓𝑠/1000)⌋. So, the fitting procedure for the frame 𝑛 returns
the corresponding 𝑝 + 1 coefficients 𝐴𝑛 . For each frame 𝑛, we also
compute the Power Spectral Density 𝑃𝑆𝐷𝑛 as follows:

𝑃𝑆𝐷𝑛 (𝑓 ) =
���� 1
𝐴𝑛 (𝑓 )

����2 . (1)

Then, we compute the Logarithmic Spectral Distance 𝐿𝑆𝐷 be-
tween 𝑃𝑆𝐷𝑛 and 𝑃𝑆𝐷𝑛+1 for each pair of successive frames. Only
the mid component 𝑃𝑆𝐷𝑚 is involved in this operation because
the amount of energy in the side component is negligible. 𝐿𝑆𝐷 is
defined as the distance in dB between two power spectra:

𝐿𝑆𝐷𝑚
𝑛 =

√√√√ 1
𝐹

𝐹∑︁
𝑓 =0

(
10 log10

𝑃𝑆𝐷𝑚
𝑛+1 (𝑓 )

𝑃𝑆𝐷𝑚
𝑛 (𝑓 )

)2
[dB], (2)

where 𝐹 is the length of the 𝑃𝑆𝐷 frames.
Then, the boundary point between early reflections and late

reverberation is estimated with a knee detection algorithm [22]
performed on 𝐿𝑆𝐷 values. This criterion is chosen because higher
differences in 𝑃𝑆𝐷 values will be generated by frames containing
stand-alone early reflections, with respect to those containing dif-
fuse reverberation too. So, the frame �̂� is the one containing the
early reflections as detected by the described method. The autore-
gressive coefficients 𝐴�̂� of the frame �̂� are used to filter the dry
audio signals in the following steps.

4.3 Late reverberation matching
The core of the proposed method is the automatic tuning of DARPs
to match the late reverberation of the target RIR 𝑟 . We perform
this tuning iteratively: at each iteration the DARPs are adjusted to
minimize the difference between the DAR output and target signal.
In the following, we describe first the DARPs tuning procedure,
then we present the employed kernel and loss function. The DARPs
optimization has been implemented with the Python library Scikit-
Optimize [15]. The employed DARs in VST3 format have been
manipulated with the Python library Pedalboard [1].

4.3.1 DARPs tuning. Before the DARPs tuning, we pre-processed
the target RIR 𝑟 and the sweep 𝑠 , the DAR input. We computed 𝑠𝐴 ,
used as DAR input, by filtering the sweep 𝑠 with the mid component
coefficients 𝐴𝑚

�̂�
. Then, in order to compare 𝑟 with the DAR output

𝑠𝐴 , we compute 𝑠𝑟 as the convolution between 𝑟 and the sweep
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Figure 1: Overall workflow of the proposed reverb matching method.

𝑠 . The DARPs tuning is based on a Bayesian optimization using a
Gaussian process as a prior [28] to minimize the function F :

F (𝑠𝑟 , 𝑠𝐴) = ℓ (𝑠𝑟 , 𝐷 (𝑠𝐴, 𝑃)), (3)

where 𝑃 are the DARPs and𝐷 is the artificial reverberator. The func-
tion F is assumed to follow a multivariate Gaussian distribution. At
iteration 𝑖 , the equalized sweep 𝑠𝐴 is processed with the DAR given
the current DARPs 𝑃𝑖 . The DAR returns the reverberated sweep
𝑠𝐴 . Then, the loss function ℓ (𝑠𝑟 , 𝑠𝐴) between the target 𝑠𝑟 and the
estimate 𝑠𝐴 is computed. Since the mid and side components have
unbalanced energy content, we opted to compute ℓ with left-right
encoding. Then, the left and right loss values are averaged.

An acquisition function A chooses the DARPs 𝑃𝑖+1 for the next
iteration within a range of values. A kernel function C, describing
the covariance of F , compares the current parameters 𝑃𝑖 with the
new candidate ones. In our work, A is a choice between three
acquisition functions: Lower Confidence Bound (LCB), negative
Expected Improvement (EI) and negative Probability of Improve-
ment (PI). The choice is based on a gain assigned to each acquisition
function and updated every iteration.

4.3.2 Matérn kernel. To model the prior Gaussian distribution of
F , we used the Matérn kernel C [31, Ch. 4, Sec. 4.2] as covariance
function between the parameters:

C
(
𝑃 𝑗 , 𝑃𝑘

)
=

1
Γ(a)2a−1

(√
2a
𝑙
𝑑 (𝑃 𝑗 , 𝑃𝑘 )

)a
𝐾a

(√
2a
𝑙
𝑑 (𝑃 𝑗 , 𝑃𝑘 )

)
, (4)

where 𝑑 (𝑃 𝑗 , 𝑃𝑘 ) is the Euclidean distance between the points 𝑃 𝑗
and 𝑃𝑘 (the DARPs in our case), 𝐾a (·) is a modified Bessel function
and Γ(·) is the gamma function. Further, the kernel is controlled
by the hyperparameters 𝑙 and a , where 𝑙 > 0 is the length-scale
parameter and a controls the smoothness of the resulting function.
We set 𝑙 as a vector of ones (one element for each DARP) and a = 5

2 .

4.3.3 Perceptual loss function. We defined the loss function ℓ as
a modified version of the ones used in [8, 18]. The loss ℓ (ℎ, ℎ̂) is

the mean absolute difference between the multi-resolution spectro-
grams of two signals ℎ and ℎ̂. In particular, to define a perceptually
motivated loss, we compute the mel-spectrogram in dB: the spec-
trogram frequencies are mapped to the Mel scale through a mel
filter-bank, then, the values are converted in dB. Thus, the mel-
spectrogramM𝑓 in dB for a signal ℎ is defined as:

M𝑓 (ℎ) = 10 log10
[
mel(STFT𝑓 (ℎ))

]
[dB], (5)

where STFT𝑘 is the Short-Time Fourier Transform with frame
size 𝑘 and mel is the filter-bank mapping to the mel scale. In the
STFT computation, we employed an Hanning window of size equals
to 𝑘 and an overlap equals to 25% of 𝑘 . All values of the spectrum
are truncated to the lower threshold of −60 dB.

Finally, the loss function ℓ is computed as:

ℓ (ℎ, ℎ̂) =
∑︁
𝑓 ∈𝐹

1
𝑇

𝑇∑︁
𝑡=1

���M𝑡
𝑓
(ℎ) −M𝑡

𝑓
(ℎ̂)

��� , (6)

where 𝑡 is the time frame index, 𝑇 is the number of time frames
and 𝐹 = {256, 512, 1024, 2048, 4096} are the selected spectrum frame
sizes. Before the loss function computation, a third-order high-pass
filter at 20 Hz is applied to the target RIR. This prevents infrasonic
components to influence the loss function.

4.3.4 Implementation details. In the DARPs tuning procedure, we
considered all the parameters with few exceptions. We tuned all
the FDN parameters (delay length, reverberation time, fade-in time,
high/low cutoff, high/low Q, high/low gain, dry-wet ratio) except
for the feedback matrix size, fixed to 64. We tuned all the Free-
verb parameters (room size, damping, wet and dry levels, stereo
image width) except for the freeze mode parameter, fixed to 0 to
avoid a continuous feedback loop state. For the detailed parameters
behavior, refer to the related FDN3 and Freeverb4 repositories.

3https://git.iem.at/audioplugins/IEMPluginSuite/-/tree/master/FdnReverb
4https://github.com/juce-framework/JUCE/blob/master/modules/juce_audio_basics/
utilities/juce_Reverb.h
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We decided to limit the matching procedure iterations to 180
since this was found to be enough to reach the loss function’s
minimum. We evaluated the DARPs tuning on a computer with a
Ryzen 5 @ 3.6 GHz CPU and a 24 GB RAM. The procedure took 13
and 7.3 minutes on average for FDN and Freeverb, respectively.

5 EVALUATION
The devised reverb matching method has been implemented and
evaluated with two DARs: FDN and Freeverb. FDN [11] is a DAR
based on an orthogonal matrix feedback reverberation unit. We em-
ployed the FdnReverb implementation from the IEM Plug-in suite.5
Freeverb is made of four Schroeder allpass filters in series and eight
Schroeder-Moorer filtered-feedback comb-filters in parallel [27].

We evaluated the method both with objective metrics and a
listening tests. In this section, we describe the metrics and the test
protocol. Then, the obtained results are reported and discussed.

5.1 Objective evaluation
We computed a set of reverberation features from the target RIRs 𝑟
and the corresponding RIRs approximated with our method. The
computed features are: reverberation time 𝑇20, early decay time
𝐸𝐷𝑇 , centre time 𝑇𝑆 , strength index 𝐺 , clarity index 𝐶80, lateral
energy fraction 𝐿𝐹80 and spectral centroid 𝑆𝐶 [12, 13]. The features
have been computed as averages according to ISO 3382 standard [9].
The strength index𝐺 is based on the first 5ms of the RIR as reference
for the loudness. We computed 𝐿𝐹80 comparing the mid and side
components of the RIRs. Then, we computed 𝑆𝐶 with an Hanning
window 2048 samples long and with 25% of overlap.

Table 1 reports the features values for each RIR and for each
reverberation condition (target, matched with FDN and matched
with Freeverb). From the table, we notice that 𝑇20 and 𝐶80 are the
best matched features values, i.e. with the lower Mean Absolute
Percentage Error (MAPE) values. The good match of 𝑇20 suggests
that the DARPs optimization provides a reasonable match of the
reverberation tail length. Additional details (𝑇20 per octave) are
given in the supplementary materials. While the good match of
𝐶80 is probably due to the early reflections equalization procedure.
The remaining parameters have higher MAPE values. In particular,
𝐿𝐹80 has the lowest performances, probably because both DARs
lack of parameters to consistently control the stereo image and the
recorded RIRs are binaural.

Comparing the performances of the two DARs we notice mixed
results. Freeverb has better performances for the majority of the
features: 𝐸𝐷𝑇 , 𝑇𝑆 , 𝐶80 and 𝑆𝐶 . However, Freeverb has a significant
higher MAPE for 𝐿𝐹80 which is mostly influenced by its value for
the Small Room RIR. So, for 𝐿𝐹80 and the remaining features (𝑇20
and 𝐺), FDN performs better than Freeverb.

Finally, in Fig. 2 the mel-spectrogram in dB of an example target
RIR is compared with the corresponding versions matched with
FDN and Freeverb. Note that the reverberation tail is very similar
between the target and the matched versions. This is an example
of the aforementioned good match of 𝑇20. However, we notice also
that there are some inconsistencies in the mel-spectrograms. For
example, there are some notches in the high frequencies for FDN
that do not exist in the target mel-spectrogram.
5https://plugins.iem.at/docs/plugindescriptions/#fdnreverb
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Figure 2: Comparison between an example target RIR (Audi-
torium Hall) and the versions matched with FDN and Free-
verb. Themel-spectrograms in dB of the left channel is shown
for each RIR convolved with the logarithmic sine sweep 𝑠.

5.2 MUSHRA test
We performed a MUSHRA test [3] to assess the subjective perfor-
mances of our method. We employed webMUSHRA [24], a web-
based implementation of the test. All the stimuli and the matched
RIRs used in the test are provided in the supplementary materials.

5.2.1 Test design. In each trial we asked subjects to rate the simi-
larity between the reverberation of a “Reference” audio track and
five conditions. The “Reference” is an audio stimulus reverberated
with one of the target RIRs. Two conditions are the reverberation
matched with our method using FDN and Freeverb. Two conditions
are the “Standard Anchor” (SA) and the “Mid-quality Anchor” (MA),
i.e. the “Reference” processed with a low-pass filter at 3.5 kHz and
at 7 kHz, respectively. The remaining condition is the same as the
“Reference”, i.e. the “Hidden Reference” (HR). Subjects rate the simi-
larity between the “Reference” and each of the conditions with a
scale from 0 to 100. According to MUSHRA guidelines, we informed
the subjects about the “Hidden Reference” among the conditions
and we encouraged them to give it the highest score, if identified.

The test was composed by a total of 18 trials given by the combi-
nation of 6 target RIRs (see Section 3.1) and 3 audio stimuli (see Sec-
tion 3.2). The test lasted about 20 minutes and we recommended the
subject to take a break halfway. In a post-test interviewwe asked the
following information about the subject: age range, gender, degree
of experience in audio reverberation (None, Intermediate, Expert),
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Table 1: Reverberation features for each target RIR and for each reverberation condition. The last row represent the Mean
Absolute Percentage Error (MAPE) between the target RIRs features and the ones of the two DARs.

RIR Reverb 𝑇20 [ms] 𝐸𝐷𝑇 [ms] 𝑇𝑆 [ms] 𝐺 [dB] 𝐶80 𝐿𝐹80 [dB] 𝑆𝐶 [Hz]

Auditorium Hall
Reference 1557.5 1101.5 30.7 1.5 8.6 -9.1 6647.9
FDN 1459 1186.5 42.4 2.3 6.5 -5.8 1335.5
Freeverb 1405 1507.5 37.0 1.4 6.6 -9.9 3158.9

Outdoors Courtyard
Reference 1005 92.5 8.2 0.4 15.4 -10.6 7136.9
FDN 927 339 11.6 0.6 13.0 -10.0 2989.9
Freeverb 971 41 10.2 0.4 12.5 -18.7 4460.7

Recording Studio
Reference 427.5 115.1 11.8 2.2 17.1 -1.0 9268.5
FDN 410 541.5 10.4 1.3 16.0 -6.5 1673.0
Freeverb 577.5 5 3.7 0.2 18.0 -15.8 6319.7

Small Room
Reference 488 456 32.1 8.2 10.3 -0.3 8427.5
FDN 474 504 39.2 8.2 8.9 3.1 2311.3
Freeverb 597 475 12.4 0.7 11.9 -162.7 7799.9

Living Room
Reference 803 487.5 22.6 2.8 11.3 -15.2 9616.2
FDN 823 819 41.2 3.4 6.5 -4.2 849.4
Freeverb 784.5 908.5 15.9 0.8 10.6 -11.4 3890.1

Plate Reverb
Reference 525.5 446.5 4.5 0.7 18.1 -14.0 7239.2
FDN 518 645 10.5 1.1 14.3 -7.7 2102.6
Freeverb 702 35 3.2 0.2 18.0 -17.5 4730.0

MAPE (%) FDN 3.3 128.3 53.3 36.6 20.0 306.7 75.0
Freeverb 16.7 63.3 38.3 55.0 13.3 9290.0 36.7

type of used headphones (Sennheiser HD650, Other headphones
model, In-Ear/Earbuds) and auditory impairment (Yes/No).

5.2.2 Test execution. The tests were performed both in a controlled
laboratory environment and online via a web page. In the laboratory
tests, Sennheiser HD650 headphones were employed. In the online
version, we advised subjects to use these headphones if possible
(hence the post-test question mentioned above).

We collected 16 subjects (15 male and 1 female) to perform the
test. MUSHRA guidelines defines as an outlier any subject rating
the hidden reference below 90 for more than 15% of the trials. In our
test, only one subject was found to be an outlier and was discarded
from subsequent analysis. With regard to age, 12 subjects were in
the 18-27 range, two in the 28-37 range and one in the 48-57 range.
Only one subject reported to be an expert of audio reverberation
while the remaining ones had intermediate experience. Only one
subject reported to have an auditory impairment. However, the
subject correctly identified all hidden references, and was therefore
kept for subsequent analysis. All subjects used Sennheiser HD650
headphones, except for one who used a different model.

5.2.3 Test results. The scores for each condition are reported in
Fig. 3, which shows that our method achieves higher median scores
with respect to the anchors. Median scores are about 70 for both
FDN and Freeverb. We investigated the statistical significance of
the distribution differences. MUSHRA guidelines recommends to
use Analysis of Variance (ANOVA). However, parametric statistical
tests like ANOVA require that data satisfy certain assumptions. The

study in [19] claims that MUSHRA data typically violates these
assumptions and suggests to use non-parametric tests, instead.

We tested the normality of the distributions with the Shapiro-
Wilk test [25], and found that the null hypothesis that a population
is normal was always rejected for at least one or more of the popu-
lations. Thus, we resorted to using the non-parametric Friedman
test [10] as omnibus test and the post-hoc Nemenyi test [20]. All sta-
tistical tests were performed with the Python library Autorank [17].

We set the family-wise significance level of the tests to 𝛼 =

0.05. We decided to investigate the statistical significance of the
distributions differences for the overall scores and grouped by audio
stimuli (3 groups) and target RIR (6 groups). Therefore, we balanced
these multiple comparisons applying the Bonferroni correction [2].
For all groups, the null-hypothesis of the Friedman test that there is
no difference in the central tendency of all populations is rejected.
Thus, we can apply the Nemenyi post-hoc test. For the overall
group, the difference in median scores between our method and the
two anchors is statistically significant for both FDN and Freeverb.
The difference between FDN and Freeverb is not significant. These
results are summarized in Fig. 3. Results of per stimulus and per
target RIR analyses are shown in Tables 2 and 3, respectively. Here,
the comparison with the hidden reference is left out since its scores
are always significantly higher than the other conditions.

Then, we performed the statistical analysis on scores grouped
by audio stimuli (drums, sax and speech). The analysis results are
shown in Table 2 where for each stimulus we report if the differ-
ences between conditions pairs distributions are not statistically
significant. For drums and speech stimuli, we found results similar
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Figure 3: Violin plot of the overall MUSHRA scores distribu-
tions for each condition. Lines between conditions means no
statistical significant difference.

Table 2: Results of the statistical analysis on the comparison
between the score distributions for each condition pair and
for each audio stimulus. The black dot •means no significant
difference. The last column represent the median score.

SA MA FDN Freeverb Med.
Score

Drums

SA 14.5
MA 34.0
FDN • 63.0
Freeverb • 62.0

Sax

SA 39.5
MA • • 80.0
FDN • • 80.0
Freeverb • • 77.5

Speech

SA 25.0
MA 47.5
FDN • 70.5
Freeverb • 70.0

to the overall group scenario where FDN and Freeverb scores are
significantly higher than the anchors, while their difference it is not
significant. On the contrary, for the sax stimulus FDN and Freeverb
distributions are not significantly different from the Mid-quality
anchor (MA) one. We hypothesize that the low-pass filtered version
of the sax stimulus is still very similar to the reference due to the
faint high-frequency content of the stimulus. This could explain
the high median score of MA for the sax stimulus.

Finally, we analyzed the scores grouping by the six target RIRs.
Table 3 shows the comparisons between distributions for each
condition pair and for each target RIR. Except for Plate Reverb, the
difference with MA is not significant for both FDN and Freeverb

Table 3: Results of the statistical analysis on the comparison
between the score distributions for each condition pair and
for each target RIR. The black dot • means no significant
difference. The last column represent the median score.

SA MA FDN Freeverb Med.
Score

Auditorium
hall

SA 27.0
MA • • 56.0
FDN • • 69.0
Freeverb • • 71.0

Outdoors
courtyard

SA • 29.0
MA • • • 54.0
FDN • • 78.0
Freeverb • • 72.0

Recording
studio

SA 21.0
MA • • 60.0
FDN • • 65.0
Freeverb • • 61.0

Small room

SA • 27.0
MA • • 55.0
FDN • 80.0
Freeverb • • 55.0

Living room
(CATT)

SA 27.0
MA • • 51.0
FDN • • 68.0
Freeverb • • 70.0

Plate reverb
(REVelation)

SA • 18.0
MA • • 41.0
FDN • • 80.0
Freeverb • 83.0

for all RIRs. For the Plate Reverb RIR, instead, Freeverb scores
distribution is significantly different from the MA one. However,
Freeverb scores for the Small Room RIR case is the only case where
our method distribution is not significantly different from the SA
one. The Small Room is also the only case where the difference
between FDN and Freeverb is not significant. The bad performances
of Freeverb with the Small Room RIR are probably due to the more
perceivable coloration effects of the RIR. So, with the target RIR
grouping, the difference between our method and the anchors is
more often not significant. This is true even though the median
scores of our method is always greater or equal than the anchors’
ones with both FDN and Freeverb. This could be explained by the
small number of observations for each group in the RIR grouping
with respect to the overall group and the stimuli groups.

6 CONCLUSION
In this paper, we proposed a reverb matching method based on
the automatic optimization of DARPs to match a target RIR. We
evaluated the method through a MUSHRA test employing two
DARs: FDN and Freeverb. Analyzing the test results, both DARs
provide an overall good match of the target RIR. Our method has

42



AM ’22, September 6–9, 2022, St. Pölten, Austria Bona, Fantini, Presti, Tiraboschi, Engel, Avanzini

always a median score greater or equal than the anchors’ ones
although grouping by target RIR the statistical significance of this
difference is less frequent. However, this could be explained by a
lower number of observations in the RIR groups.

While it is difficult to draw a direct comparison with other ex-
isting approaches, in terms objective and subjective evaluations, a
number of methodological and computational advantages can be
mentioned. First, it is suitable for any DAR in VST3 format (besides,
in the MUSHRA we showed that FDN and Freeverb achieve compa-
rable results). Second, no assumption is made on the type of target
reverberation, that can be both natural and artificial. Third, the
method is not based on deep learning; thus, we perform the reverb
matching task without the need of large datasets and expensive
training procedures. Lastly, the method is suitable for real-time
rendering. The DARPs optimization procedure cannot be run in
real-time; however, once the DARPs has been matched to the target
RIR, the DAR can process any audio signal in real-time.

We plan to improve several aspects of our method. The modeling
of early reflection could be improved. We designed the early reflec-
tion extraction method to get a reliable estimation on the employed
RIRs. In future, we plan to improve the method and make it suitable
for any RIR. Then, early reflections modelling could be performed
using DARs that can accurately render them. A potential candidate
DAR is Scattering Delay Network (SDN) [7]. Further, about the
listening test, we can select more meaningful anchors than those
defined in the MUSHRA recommendation. As an example, a pos-
sible anchor could be a random setting of DARPs. An additional
condition that could be evaluated in the test is the DARPs tuning
performed by an expert audio engineer. A further improvement
would be the possibility to tune the DARPs given any reverber-
ated signal as input. In fact the need of a RIR in input could be a
substantial limitation in end user applications.

The MUSHRA test reported in this paper was aimed at assessing
the “authenticity” of the matched reverberation, i.e. the perceived
similarity between a real sound and its virtual approximation. Our
results suggest that the method does not provide authentic rever-
beration matching. However, a more meaningful evaluation of the
method for AAR scenarios should be aimed at assessing the “trans-
fer plausibility” of the scene [32]. Therefore, we plan to perform
a different test where various sound sources with real and virtual
reverberation are rendered together in a complex auditory scene.
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