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A Modular Physically Based Approach to the Sound
Synthesis of Membrane Percussion Instruments

Federico Avanzini and Riccardo Marogna

Abstract—This paper presents a set of novel physical models
for sound synthesis of membrane percussion instruments. First,
a model for tension modulation in a struck circular membrane
is discussed, which simulates the dynamic variations of par-
tial frequencies occurring at large amplitude vibrations of the
membrane. It is shown that the model, which is derived from a
more general theory of nonlinear elastic plates, can be efficiently
integrated into a modal synthesis engine. Novel models for two
relevant sound production mechanisms in membrane percussions
are then proposed, i.e., coupling between two membranes through
enclosed air in two-headed percussions, and string-membrane
coupling. Both are based on a lumped modeling approach and can
be straightforwardly connected to the nonlinear membrane model.
By virtue of this modular approach, individual elements (circular
linear/nonlinear membranes, impact force, membrane coupling
through air, string-membrane coupling) can be combined to form
different instruments. The acoustic results of the proposed models
are demonstrated by means of analysis of numerical simulations.

Index Terms—Membrane percussion instrument, modal syn-
thesis, musical instruments, nonlinear systems, physical modeling.

I. INTRODUCTION

P ERCUSSIONS, and particularly membrane percussions,
are amongst the most ancient musical instruments and

have evolved in a myriad of species over the millennia. Ac-
cording to the musical acoustics literature [1] they can be
classified into three broad categories: those composed of a
single membrane (or head) coupled to an enclosed air cavity,
those composed of a single membrane supported by an open
shell, and those composed of two heads coupled through an
enclosed air cavity (the “batter” head is struck by the player,
the “carry” head resonates due to coupling). Moreover, other
resonating and interacting elements are often present.

Playing styles also vary considerably: membranes may
be struck with a wooden stick or a mallet or the bare hand,
brushed, tuned with a tuning pedal, damped and loaded in
a variety of ways. Moreover the fine characteristics of the
materials affect the sound quality: heads can be clear or coated,
single or two-ply layered, and shells made of different qualities
of woods, or metals, or plastics, also contribute in different
ways to instrumental timbre. However, especially the role of
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the shell material is not completely clarified by the limited
amount of studies (and one may even argue that such role is
not always as relevant as common belief by musicians would
suggest, similarly to other instruments [2], [3]).

For all these reasons membrane percussions represent a
challenge for sound synthesis. One of the most promising and
rapidly advancing approaches to sound synthesis is physical
modeling, i.e., algorithms that simulate the sound generating
mechanisms in the system of interest. Possibly the main advan-
tage over traditional methods reside in physically meaningful
model parameters, which allow intuitive interaction with the
models. Two recent tutorial papers [4], [5] discuss trends and
future directions in physical modeling of musical instruments,
and show that membrane percussions are relatively less studied
than other classes of instruments, such as strings or winds.

Signal-based approaches to percussion sound synthesis,
based on source-filter decompositions, have been proposed
in the early 1990s [6], [7]. Cook [8] developed a series of
“physically informed” approaches to the modeling of percus-
sion sounds. Physically based approaches have been mainly
based on 2-D or 3-D digital waveguide meshes (digital wave-
guide mesh (DWM) [9]). These computational structures have
reached a high level of maturity: characterizations in terms
of mesh topologies have been investigated [10], methods for
compensating for numerical dispersion have been proposed
[11], and a unified view of DWMs and wave digital filters [12]
has been developed [13].

More recently, modal synthesis [14] has been applied to
membrane simulation. Particularly relevant for the scope of
this paper is the work by Rabenstein and coworkers [15], who
have proposed the so-called functional transformation method
(FTM): in essence, the method exploits the existence of an
analytical form of the modal parameters for a set of relevant
multidimensional differential systems, including strings and
membranes with various boundary conditions. Finally, fi-
nite-difference methods have also been used, both for analysis
[16], [17] and for synthesis purposes [18].

In their simplest formulation, physical models of membranes
assume linearity of vibrations. However, this assumption can be
accepted in the most coarse approximations only, and realistic
models require abandoning it. Relevant nonlinearities include
those involved in the excitation mechanisms (e.g., the impact
force in hammer-membrane contact), as well as those arising
at large amplitude membrane vibrations. This latter geometrical
nonlinear effect occurs because in the large oscillation regime
the membrane area, and thus its tension, are modulated in de-
pendence of the instantaneous displacement. This produces an
increase of the oscillation frequency at large displacements, and
consequently frequency glides.
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This effect is audible in many instruments and characterizes
strongly their timbre; therefore, it needs to be simulated in
the synthesis models. Tension modulation in 1-D systems, i.e.,
strings, has been modeled in the context of both waveguide
[19] and modal [20] approaches. Nonlinear extensions of
the FTM have been proposed to include tension modulation
effects, for the string [21] and the rectangular membrane [22].
More general nonlinear models of large amplitude vibrations
of membranes can be derived from thin plate theories [23],
[24], which account not only for pitch glides encountered in
membranes, but also for more complex phenomena such as
buildup of high-frequency energy and subharmonic generation
exhibited, e.g., by cymbals and gongs [25], [26].

Quite surprisingly, given their relevance for musical applica-
tions, models for tension modulation in circular membranes are
less studied than in rectangular ones. Moreover, other relevant
sound production mechanisms in membrane percussions seem
to have been so far largely disregarded in the literature of
physical models. In this paper, we propose a physical model
for tension modulation effects in a circular membrane, which
is based on the so-called Berger approximation of the von
Karman theory of thin plates [27]. It is shown that the model
can be regarded as a 2-D extension of the tension-modulated
string, and that it can be efficiently integrated into a modal
synthesis engine. The nonlinear membrane is coupled to a
nonlinear lumped model of impact force [28]. We then propose
novel models for two relevant sound production mechanisms,
i.e., membrane coupling through enclosed air in two-headed
instruments, and string-membrane coupling. This latter sound
production mechanism is encountered in several membrane per-
cussions, starting from medieval and renaissance instruments
like the tabor, up to marching instruments used in the military
and modern orchestral instruments [1, Ch. 18], [29, Ch. 10].

We follow a modular approach in which individual elements
(circular membrane, impact force, shell, and head coupling
through air, additional interacting elements) are modeled sep-
arately, and can be subsequently combined to form different
instruments. The topic of block-based modeling for physically
based sound synthesis algorithms has received considerable
attention in recent years [30], particularly for cases where
different components may be modeled according to different
paradigms. The models discussed in this paper are all based
on a “lumped” approach, and interconnections are therefore
straightforward.

Numerical realizations for all the models are derived using a
general technique for the computation of nonlinear digital filter
networks, recently proposed in [31]. Results from numerical
simulations show that the models are able to capture the most
relevant effects of the simulated physical mechanisms on the
tone character: glides of partials due to tension modulation, oc-
currence of mode pairs due to coupling of two membranes, noisy
oscillations due to string-membrane interaction.

The remainder of the paper is organized as follows. Section II
summarizes a baseline physical model for a struck linear mem-
brane [15]. This model is extended in Section III in order to ac-
count for nonlinear tension modulation effects, and a discrete-
time formulation is proposed. Section IV discusses a model for
simulating the effects of air loading and coupling of membranes

in a percussion with two heads. Finally, a model for the simula-
tion of string-membrane coupling is discussed in Section V. Re-
sults from numerical simulations of all the models are reported
in Section VI. Accompanying audio examples can be found at
http://smc.dei.unipd.it/membranes.html.

II. STRUCK LINEAR CIRCULAR MEMBRANE

A. PDE for the Circular Membrane

The partial differential equation (PDE hereafter) that de-
scribes the vibration of a circular membrane with dispersion,
dissipation, and driving force can be written as follows [32]:

(1)

where is the membrane vertical displacement at
the point (in polar coordinates) and time , while

is the driving force density (in ). The
operators and are the Laplacian and bi-
harmonic operator, respectively. The constants and are
the membrane surface tension (in N/m) and surface density (in
Kg/m ), and the corresponding wave velocity is .
Dissipation is modeled through a frequency-independent term

and a frequency-dependent term , which incorporate air
losses, those inside the membrane, and those at the boundary
[32]. Finally, the fourth-order term accounts for the effect of
the (small) membrane bending stiffness ,
where is the membrane height and are the material
Young modulus and Poisson ratio, respectively.

The PDE has a unique solution given boundary and initial
conditions. If is the circular boundary of
a membrane with radius , then ideal boundary conditions are
represented by zero deflection and skewness on

(2)

For the sake of simplicity, we choose the initial conditions in
order to have zero initial displacement and zero initial velocity

(3)

B. Normal Modes

The PDE in (1) can be turned into a set of ordinary differen-
tial equations that describe the dynamics of the normal modes.
Recall that a mode is a particular solution of the PDE of the form

, in which temporal and spatial dependencies are de-
coupled. The modal solution is associated to a Sturm–Liouville
(SL) transform, an integral operator whose kernel is given by
the spatial eigenfunctions , i.e., the modal shapes. Clearly the
kernel depends on the particular problem in exam: for the cir-
cular membrane with fixed boundary, it is known [1] that the
corresponding spatial eigenfunctions are

(4)

where , and is the th
zero of the th-order Bessel function of the first kind, . The
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Fig. 1. Spatial eigenfunctions � ��� �� corresponding to the four lowest
modal frequencies (the radial coordinate is normalized in all plots).

eigenfunctions corresponding to the lowest modal frequencies
are shown in Fig. 1. The SL transform of a generic function
and the inverse SL transform of are then defined as

(5)

The second equation in (5) expresses as the series of
its normal modes . By substituting the normal mode so-
lution in (1), and applying the
SL transform, one finds the ordinary differential equations

(6)

Equation (6) says that the mode is a forced second-order
oscillator whose parameters are uniquely determined by those
of the original PDE (an equivalent formulation can be found in
[15]). The forcing term is the SL transform of

(7)

In the ideal case of an external force (e.g., an impact
force) applied at a single “hit” point of
the membrane surface, the force density takes the form

, where the notation
designates a 2-D Dirac function centered at (more precisely,
if , then .

Then (7) becomes

(8)

C. Impact Force

The force density that drives the membrane displace-
ment in (1) may result from any kind of mechanical interaction.
Since almost all membrane percussions are played by striking,
we extend the linear membrane model with an impact model
that describes the action of an ideal “hammer”, e.g., a wooden
stick or a mallet.

Assume that the hammer is a rigid body of mass that
moves with a trajectory . The hammer is hitting the mem-
brane at the hit point if its displacement is lower
than the membrane displacement at , i.e., if the condition

holds. Then the force gen-
erated at the impact in is given by

otherwise
(9)

where the parameter is the force stiffness, is the force dis-
sipation coefficient, and the exponent depends on the local
geometry around the contact area.

This model has been originally proposed in [33], and has been
previously used in physically based models of contact sounds
[28]. It can be regarded as an extension of the Hertz theory of
contact, that includes non-spherical contact geometries, and ac-
counts for dissipation during contact.

In the simplifying hypothesis of the force acting ideally on a
single hit point, the impact model (9) can be straightforwardly
coupled to the membrane model through (8). A more realistic
approach [16] would require to estimate the average contact area
and an associated spatial window around the hit point,
so that and can be com-
puted to using the general (7).

If no other forces act on the hammer, its trajectory is cou-
pled to the impact model through the Newton law

. Note that since depends on both the membrane and the
hammer displacements, the complete model becomes nonlinear.
This point is discussed further in Section III-C.

III. NONLINEAR MEMBRANE WITH TENSION MODULATION

The model described so far does not account for a very impor-
tant nonlinear effect encountered in real membranes, i.e., ten-
sion modulation. Since the membrane area varies during oscil-
lation, the tension also varies in dependence of the displacement,
causing variations of the frequency content during the sound
evolution, which become noticeable for large amplitude vibra-
tions. Being tension modulation a geometrical nonlinearity (i.e.,
it only depends on the geometry of the problem, while the linear
theory of elasticity is still assumed to hold), relatively simple
models can be used to describe it.

A. Simplified Description of Large Amplitude Vibration

Nonlinear theories for large amplitude vibrations of mem-
branes are typically derived from more general theories for thin
plates subjected to lateral and in-plane forces [23], [24]. One
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of the most widely used theories is due to von Karman [27].
In this approach, plate vibrations are modeled by means of two
nonlinearly coupled PDEs, for transverse displacement and for
a stress function. The von Karman equations have been applied
to the sound synthesis of plates in [25] and [26].

A simpler approach to the modeling of geometrical nonlin-
earities in plates is that of Berger [34], [27]: it is based on a sim-
plification of the von Karman equations, in which the elastic
energy due to the second invariant of the membrane strain is
disregarded compared to the square of the first invariant. A fun-
damental consequence of Berger approximation is that the re-
sulting plate equations, although still nonlinear, are decoupled,
which simplifies considerably the analysis.

The Berger approximation has no fully satisfactory justifica-
tion, and may appear to be a mathematical device artificially in-
troduced to decouple the problem. In fact, it has been shown to
provide erroneous results for some boundary conditions, particu-
larly when the plate edge is free to move in the in-plane direction.
On the other hand, Berger equations provide accurate results for
plates with clamped edges, and it has been demonstrated [35] that
in this case the equations can be derived through a perturbation
analysis method of the plate equations, without using the original
Berger approximation. In particular, the model has been applied
to theanalysisof largeamplitudedeflectionofmembranes in[36],
and has been shown to provide results that are in good agreement
with other approximate analysis. As far as sound synthesis is con-
cerned, it is noted in [25] that the Berger model is able to simulate
the pitch gliding effects under exam here, although it cannot ac-
count formoredramaticnonlineareffectsoccurring inplates such
as cymbals and gongs.

In light of the above discussion, we resolve to use the Berger
model to simulate tension modulation effects in the circular
membrane. The model can be formulated as follows:

(10)

where we have omitted spatial and temporal dependencies for
simplicity. The function has the form [27]

(11)

According to these equations, the nonlinear term is
modeled as an integral over the state of the membrane, and can
be interpreted as the surface tension generated in dependence
of the displacement , in addition to the tension at rest .

Moreover, the double integral in (11) can be interpreted as a
measure of the total membrane area corresponding to the dis-
placement . Specifically, Fig. 2 shows that a first order approx-
imation of the infinitesimal area element is

(12)

Fig. 2. Computation of area element �� as a function of the displacement
���� �� [see (12)].

Therefore, the double integral in (11) is an estimate of the quan-
tity , where is the total membrane area cor-
responding to the displacement , and is the total
area at rest. In this respect, the Berger model can be thought of
as a 2-D extension of the Kirchhoff–Carrier model for the ten-
sion-modulated string (see, e.g., [1]).

B. Modal Formulation

If the nonlinear term that accounts for tension modulation
in (10) is moved to the right-hand side, the resulting equation
can be regarded as describing a linear membrane with constant
tension , which is forced by two excitation terms, and

. Both these terms are nonlinear and act
in feedback to the membrane system, since they both depend on
the membrane state.

In order to include in the modal formulation, this has
to be written in terms of the modes rather than the displace-
ment . By applying the Sturm–Liouville transform, the non-
linear term in the transformed domain is then (see Appendix A)

(13)

and represents the effect of tension modulation on the
mode. In order to express as a function of the modes
only, the nonlinear tension has to be rewritten as a func-
tion of . Substitution of the inverse SL transform (5) into (13)
yields

(14)

The integral can be computed explicitly by exploiting the or-
thogonality of the functions , and the recurrence prop-
erties of the Bessel functions. The final result is

(15)

Details about the derivation are reported in Appendix B.
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Fig. 3. Block scheme for the discrete-time realization of the nonlinear membrane model, including tension modulation and impact force. The integer � � � is
the discrete time variable.

By means of (13), (15), a numerical realization of the non-
linear membrane can be developed in which is computed
at runtime as a function of the outputs of the filter bank repre-
senting the modes, as explained in Section III-C next.

C. Numerical Realization

In the previous sections, the struck, tension-modulated mem-
brane has been modeled as a liner membrane forced by the two
excitation terms and . Both these terms are algebraic
(i.e., memoryless) nonlinearities, which depend on the mem-
brane (and hammer) state.

The numerical realization is then based on the modal for-
mulation of the linear membrane. From (6) one can see that in
the Laplace domain the normal mode is the output of a
second-order filter , where

(16)

and where the loss factor and the center frequency
depend on the PDE parameters as follows:

(17)

The filters are discretized using the bilinear transform, which
has several desirable properties: it is a low-order method, and
consequently the numerical filters are still second-order; it is
an unconditionally stable numerical method; it is aliasing free.
On the other hand, it introduces frequency warping, and con-
sequently prewarping has to be applied to the resonators (16)
when approaches a relevant fraction of the Nyquist fre-
quency. However it has to be noted that warping becomes sig-
nificant only if several hundreds of modes are simulated: as

an example, for a membrane with rad/s and
nodal diameters and circles (i.e., 240 modes), the

maximum modal frequency kHz is warped by less
than 3% at a sampling rate kHz. Moreover, higher
modes are extremely dense and decays out quickly, so that they
are perceived as high-frequency content especially in the attack
transients, rather than individual spectral lines.

Similarly to the membrane modes, the hammer displacement
is the output of a second-order filter applied to the

impact force. If no other forces act on the hammer, the filter is

(18)

which is also discretized by means of the bilinear transform.
In conclusion, and are turned into numerical filters
that are parametrically controlled through the membrane and
hammer physical parameters.

The block scheme in Fig. 3 shows a numerical realization of
the circular membrane. The bank of oscillators simulates
a set of membrane modes, while the block accounts for the
dynamics of the hammer. The remaining blocks compute the
nonlinear excitation signals. The impact force applied at the hit
point is computed in the block as a function of hammer
and membrane states, according to (9), and is fed back to the
modes according to (8). The nonlinear tension is computed as a
function of the modal displacements in the block , according
to (15), and is fed back to the modes according to (13).

The input to the synthesis algorithm is represented by the
initial hammer velocity (which corresponds to setting an ap-
propriate initial state to the filter ) and by the hit point .
Initialization of triggers the computation, and the system
evolves autonomously until a subsequent impact is triggered,
possibly at a different hit-point. The system output is taken to
be the membrane displacement signal , captured at one
(or possibly more) “pick-up” point , which may or may not
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coincide with the hit point. The signal is the combina-
tion of the modes at , according to (5).

The block scheme of Fig. 3 also shows that the computation
of the forcing terms introduces feedback loops.
Moreover, since these terms depend nonlinearly on instanta-
neous values of the modal displacements , delay-free com-
putational loops are generated in the block scheme, and a non-
linear implicit system must be solved at every computation step
in order to find new values of all system variables.

A general technique for the computation of nonlinear dig-
ital filter networks containing delay-free loops has been recently
proposed in [31]. The method can be applied to digital networks
composed of nonlinear and linear discrete-time filters,
arranged in an arbitrary topology. Delay-free loops are iden-
tified and solved through an ad-hoc iterative approach. In this
case, the number of linear blocks in the network coincides
with the number of simulated modes plus 1 (the
filter ), while the number of nonlinear blocks coincides with
the number of modes to which tension modulation is applied,
plus 2 (the and the blocks). The formalism and the nu-
merical solver described in [31] can then be straightforwardly
applied to the block scheme of Fig. 3.

IV. SHELL, AIR CAVITY, MEMBRANE COUPLING

As discussed in the introduction, many membrane percus-
sions consist of one head coupled to an air cavity, or two heads
coupled through an air cavity. The air, and the shell in which it is
enclosed, have two main effects: to provide an impedance to the
membrane, and to radiate sound. From the modeling standpoint,
it is convenient to treat separately these two effects, similarly to
what is done in physical models of the piano soundboard [37].

A. A Simple Model of Air Cavity

Previous work [38] suggests that the role of the shell in radi-
ating sound is negligible with respect to the membrane: although
resonances can result from coupled motion of membrane and
shell, and an appreciable amount of energy is associated with the
shell motion, nonetheless most of the sound is radiated by the
membrane. In the remainder of this section we do not consider
coupling and radiation associated to the shell, which is treated
as a perfectly rigid boundary. Instead we focus on the effects of
the air enclosed in the shell, which affects the resulting sound
through three mechanisms.

• For non-axisymmetric modes (modes possessing
nodal diameters, i.e., with ) it acts as an inertive load:
mode oscillation does not compress the air in the cavity,
but the effective modal mass is increased by the air mass,
resulting in a lowering of the mode frequency.

• For axisymmetric modes it acts as an added stiff-
ness: in this case the motion of the membrane changes the
air volume, and the effective stiffness of the enclosed air
will raise the mode frequency.

• For instruments composed of two heads, it couples heads
especially at low frequencies: through this mechanism the
vibration of the batter head is transmitted to the resonating
carry head; in particular mode doublets will be generated
when the two membranes have similar characteristics and
tuning.

Fig. 4. Air coupling modeling for the mode (0, 1) through a simple spring/
damper system.

The first effect can be straightforwardly incorporated into the
membrane model by increasing the masses of the non-axisym-
metric modes by an equivalent mass which takes into account
the air load on the membrane surface (this effect is qualitatively
similar to the air loading effect that is responsible for resonance
tuning, e.g., in the orchestral timpani [39]). Analogously, the
second effect can be incorporated into the model by increasing
the stiffness of the non-axisymmetric modes. However the most
interesting effect is the third one, since coupling of the two heads
affects significantly the sound timbre.

The model proposed here is based on a lumped approach and
consists of a spring/damper system coupled to both heads. Since
the air load is distributed over the membrane surface, we model
air-membrane interaction as a constant force density applied to
the whole membrane surface (as depicted in Fig. 4 for the (0, 1)
mode). Therefore, the coupling effect is mainly noticeable for
the modes of type , and especially the (0, 1) mode. On
the other hand, modes with remain unaffected by
air coupling since these modes produce null net displacement
of the surrounding air, due to the symmetric configuration of
the nodal patterns ([40, Sec. 4.5]).

B. Realization

According to the spring/damper system described above, the
corresponding equation for the resulting force is

(19)

where are the average displacements of the two membranes,
are the air spring stiffness and dissipation term, respec-

tively. The average membrane displacement is defined as the
sum of the average modal displacements

(20)

The coupling force has to be applied on each membrane sur-
face through a corresponding constant force density

. In the SL domain this force density translates into

(21)
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The kernel integral in (21) includes an integral of Bessel func-
tion of the type , which in general has no
close solution. However, it also includes an integral of the type

, which is non-null only for (i.e., the av-
erage modal displacement is non-null only for , as already
stated). In this particular case, a known property of Bessel func-
tions can be used

(22)

Using this property, (21) is rewritten for modes as

(23)

while for .
Equations (19), (20), and (23) form the air cavity model. The

model can be straightforwardly integrated into the block scheme
of Fig. 3, through the inclusion of an additional feedback loop
in which 1) the average displacement is computed at each
time instant from the modal displacements with (20),
and 2) the force is computed from with (19), and

the force components are computed with (23) and
injected into the corresponding filters .

Since for the modes with , the model does
not account for the occurrence of doublets for these modes. This
is apparently in contrast with some experimental results [38]
where doublets are observed, e.g., for the mode (1, 1). However,
these doublets are to be attributed to other mechanisms, such as
mechanical coupling through the shell, or density and tension
irregularities in the membranes [41].

V. MEMBRANE–STRING INTERACTION

Several membrane percussion instruments make use of a dis-
tinguishing sound production mechanism, in which strands or
cables of wire or gut are stretched across the membrane ([1,
Sec. 18.10, 18.13], [29]. When the membrane is set into mo-
tion, it vibrates against the string producing a noisy sound. By
virtue of this mechanism, such instruments belong to the family
of untuned membranophones.

A. Lumped Model

Fig. 5(a) visualizes the simplest configuration of mem-
brane-string interaction, such as that encountered in the
medieval tabor [29]. For clarity this basic configuration is
discussed here, and the proposed model can be straightfor-
wardly extended to the case of multiple interacting strands
on the membrane. We choose to follow a lumped modeling
approach, in which the interaction is represented as point-like
excitations on the membrane. A somewhat similar approach
has been recently applied to the simulation of the prepared
piano, in which preparation elements are modeled as lumped
nonlinearities [42].

The string can make contact with the membrane on a very
large number of points. A distributed string model based on
waveguide structures or finite differences, that simulates con-
tact with the membrane on such a large number of points, would
require to pick up the membrane displacement in each of these
points. However, this is a computationally expensive operation

Fig. 5. String-membrane interaction. (a) Schematic visualization of a single
string stretched across the membrane, and (b) a lumped model (the string ex-
tends perpendicularly to the plane of the figure).

in the modal synthesis framework used in this work, since it
requires multiplications and additions for each
pick-up point, where is the order of the highest simu-
lated mode (see Section III-C).

For this reason a different approach is followed, based on
two simplifying assumptions. First, especially metallic strings
used in certain percussions possess high bending stiffness and
are extremely rigid. Second, string oscillations are usually very
small, since it is set into motion by the membrane oscillation
rather than through direct excitation. Therefore, we choose to
consider a stiff modal string in which only the first mode of
oscillation is considered.

The problem remains of how to choose the contact points. In
order to keep the computational complexity low, it is assumed
that the string makes contact with the membrane at the point of
maximum displacement, i.e., at half the string length. Fig. 5(b)
visualizes the model.

B. Realization

According to the model described above, the string displace-
ment obeys the PDE of a stiff string with dissipation

(24)

where and are the Young modulus and moment of inertia,
respectively ( , where is the string cross-section
and is the radius of gyration, e.g., for a string with
circular cross section and constant radius ). The parameters
and represent string linear density and tension, respectively,
while is the dissipation coefficient (we do not include a fre-
quency dependent dissipation term since only the first mode is
simulated). The forcing term is due to the impact force be-
tween string and membrane, which is simulated using the model
(9) discussed in Section II-C.
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Fig. 6. Numerical simulations of a struck membrane with varying hit point. (a)
Initial oscillation cycles of membrane displacement at the hit point (upper panel)
and corresponding spectrum (lower panel) for � � �����. (b) The same data
for � � ����.

A modal formulation for the string of (24) can be derived
using the same approach described for the circular membrane
in Section II-B, with the one-dimensional kernel functions

. By applying the SL transform one
finds [21] that the first mode of oscillation is modeled by the
second-order mechanical oscillator

(25)

where the loss factor and the center frequency depend
on the PDE parameters as follows:

(26)

where . This oscillator is discretized with the same
approach outlined in Section III-C for the oscillator (16), and is
coupled to the membrane model through the interaction force

of (9).

Fig. 7. Numerical simulations of the nonlinear membrane struck with high im-
pact velocity: variation in time of � .

VI. SIMULATIONS

The numerical models discussed in the previous sections
have been implemented in Matlab. This section discusses results
from numerical simulations (accompanying audio examples
can be found at http://smc.dei.unipd.it/membranes.html). The
following values have been used in all simulations for the main
physical parameters: cm, mm,
Kg/m Pa, Kg/m s,

Kg/s. The sample rate kHz has always
been used. The highest order of the simulated modes
has been varied from to depending
on the desired accuracy, which corresponds to a maximum of

simulated modes.

A. Struck Membrane

Numerical simulations of the membrane model have been fi-
nalized at assessing the ability of the model to react consistently
to different inputs (hit point and impact velocities), and partic-
ularly to simulate glides exhibited by real membranes.

Fig. 6 shows results from two simulations in which the mem-
brane has been struck at two different hit points, and with the
same impact velocity: in Fig. 6(a) is close to the center

, while in Fig. 6(b) is close to the rim . Both the
time-domain oscillations and the corresponding spectra show
that energy from the impact is transmitted mostly to the modes
with lowest frequencies when the hit point is close to the centre,
while higher modes are excited when the hit point is close to the
rim. This behavior is qualitatively similar to that of a 1-D string,
but is even more noticeable in the 2-D circular membrane, due
to the much higher modal density. For a player, the influence of
the hit point on the resulting sound spectrum is extremely im-
portant.

Fig. 7 shows a plot of the nonlinear tension as a func-
tion of time, obtained from a numerical simulation of the non-
linear membrane model of Fig. 3. In this case, the membrane has
been struck near the center with a high impact ve-
locity. Being proportional to the total membrane area, the signal

oscillates twice as fast as the fundamental frequency of
oscillation of the membrane. The effects of tension modulation
on the resulting sound are illustrated in Fig. 8. The expected
glides can be observed in the trajectories of the modal frequen-
cies.
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Fig. 8. Numerical simulations of a nonlinear membrane struck with high im-
pact velocity: spectrogram of the resulting sound. The initial glides for the lower
partials closely resemble those observed in a real membrane.

Apart from the impact velocity, the decay rate of is in-
fluenced mainly by the parameters , because these parame-
ters determine the decay times of the membrane modes. More-
over, the total number of modes involved in the sum (15) has
also a major influence: using an insufficient number of modes
produces an unnaturally slowly decaying tension. In the case of
Figs. 7 and 8, nodal diameters and circles have
been simulated. With these values, the tension modulation and
the corresponding modal frequency glides have a duration of a
few tenths of seconds, and resemble closely those observed in
real membranes [43].

B. Coupled Membranes

The coupling between the batter and carry heads produces
different sound spectra depending on their relative tuning. In
particular, if the linear tensions of the membranes are close,
the resulting sound reveals as expected beatings that are due to
mode doublets. On the other side, if the two tensions are well
separated (as an example, the carry head may be tuned “one
fourth” lower than the batter head), beatings do not occur but
the frequency content of the carry head is injected into the batter
head producing an overall richer spectrum.

Examples of these effects are illustrated in Fig. 9, which
shows the displacement signal at a pick-up point of the carry
head, and the corresponding spectrum, when the batter head is
struck. The case of nearly identical tensions is exemplified in
Fig. 9(a): since the frequencies of the (0, 1) modes are close,
the displacement exhibits beating. The case of well separated
tensions is exemplified in Fig. 9(b): no significant beating effect
is observed, but the spectrum reveals that spectral energy has
been injected from the batter to the carry head.

C. String-Membrane Interaction

The effect of the main string parameters (i.e., mass, tension,
and dissipation) on the resulting sound has been investigated
by performing “sweep tests” in which each of these parameters
varied over a wide range.

Fig. 9. Numerical simulations of two membranes coupled through air, with
different values for the linear tensions � of the batter and carry head, respec-
tively. (a) Carry head displacement and corresponding spectrum for � � �

(� � ���� and � � ����). (b) Carry head displacement and corresponding
spectrum for � � � (� � ���� and � � ����).

Numerical simulations show that the string tension is
the one that affects most the resulting sound. At low values,
string-membrane contacts are less dense in time: an example
of this behavior is shown in Fig. 10(a). As is increased, the
proper string oscillation frequency is also increased, producing
a higher density of contacts: an example of this behavior is
shown in Fig. 10(b). Note that the simulated interaction de-
picted in Fig. 10 is qualitatively similar to that obtained from
experimental measurements (see [1 Sec. 18.13]).

Consequently, has a major effect on the brightness of the
resulting sound, where brighter sounds result from higher stiff-
ness values. This effect resembles the one obtained by changing
the tension of the string on a real instrument.
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Fig. 10. Numerical simulations of string-membrane interaction. Membrane
displacement (solid line) and string displacement (dotted line) with (a) low and
(b) high string tension value.

VII. CONCLUSION

In this paper, a set of physical models for sound synthesis of
membrane percussions was proposed. It was shown that tension
modulation in a struck circular membrane can be simulated by a
modal sound synthesis model, by including a nonlinear term that
computes the time-varying tension as a function of the mem-
brane displacement. Results from numerical simulations show
that the model captures the most relevant effect of tension mod-
ulation, i.e., variations of frequencies of the membrane modes.
Although the focus of the paper is not about exact resynthesis of
sounds recorded from real membranes, it has been shown that
proper choices of the geometrical and physical parameters of the
membrane model result in sound spectra that resemble closely
those observed in real circular membranes.

Novel models for two relevant sound production mechanisms
were then proposed, i.e., membrane coupling through enclosed
air in two-headed instruments, and string-membrane coupling.
Both models are based on a lumped approach, and can there-
fore be straightforwardly connected in a modular fashion to the
modal synthesis engine used for the membrane model.

Numerical simulations of a system composed by two mem-
branes coupled through air show that, when the two membranes
have similar tuning, strong coupling between the heads leads to
the occurrence of doublets, which are especially noticeable in
the low frequency range. However, the coupling model is still
lacking many relevant features. In particular, we have not inves-
tigated the role of the shell in the coupling mechanism, nor the
effect of the air cavity resonances in sustaining modes of os-
cillation in the membrane. Also in light of the scarce literature
on the subject, the main coupling mechanisms will need to be
further investigated by means of both acoustic/mechanical mea-
surement, and finite-element simulations.

Numerical simulations of a system composed by a membrane
and a string in interaction show that the simulated string action

is qualitatively similar to that observed in experimental mea-
surements. In particular, string tension is the parameter that af-
fects most the resulting sound, with brighter sounds resulting
from higher tension values. The proposed approach will need
to be further validated in terms of both thorough comparisons
with measurements on real instruments, and extensions to more
complex configurations including multiple interacting strands.

APPENDIX A
EXCITATION TERM

Here we prove (13) by calculating as the SL trans-
form of the excitation term

(27)

where the transformation kernel is given in (4). Integra-
tion by parts yields

(28)

From this, (13) would follow immediately by recalling that
are the eigenfunctions of the operator , with associ-

ated eigenvalues . However, for the sake of clarity
we provide an explicit derivation.

By recalling that
, the Laplacian can be written as

(29)

where we have also substituted the variable .
Since Bessel functions satisfy the equation

(30)

the Laplacian (29) can be rewritten as

(31)

Substituting this expression into (28) proves (13).

APPENDIX B
NONLINEAR TENSION

Here we prove (15) by solving the integral in (14). First, by
exploiting the orthogonality of the functions (14) can
be rewritten as

(32)
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Second, by substituting the variable the above
equation becomes

(33)

and finally

(34)

where the term accounts for the trigonometric inte-
grals in (33) (and is the Kronecker delta). Now the integral
above has to be calculated explicitely. To this end, first recall
the recurrence properties of Bessel functions

(35)

Using these relations the integrand function in (34) becomes

(36)

Then, recall that in general

(37)

Using (36) and (37), the integral in (34) can be written as

(38)

Finally, observing that , and that
, yields the encour-

agingly compact (15).
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