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ABSTRACT 

The paper presents a general procedure for the compu- 
tation of filter networks made of linear filters and non- 
linear non-algebraic (dynamic) elements. The method 
is developed in the Kirchhoff domain and applies to 
cases where the network contains an arbitrary num- 
ber of delay-free paths that involve nonlinear elements. 
Compared to existing techniques the method does not 
require a rearrangement of the network structure, in- 
stead it subdivides the network into computational sub- 
structures specified by appropriate matrices related to 
the network topology. Sufficient conditions are dis- 
cussed for the applicability of the method, and results 
are provided that relate performance of the method to 
the properties of the nonlinear elements and to the net- 
work topology. The last part of the paper discusses 
applications of the method to the simulation of acous- 
tic systems, including multidimensional wave propa- 
gation by means of waveguide-mesh techniques. 

1. INTRODUCTION 

The delay-free loopproblem [ 1, sec. 6.1.31 refers to the 
presence in a network of feedback paths that are not 
computable, meaning with this that the computation 
cannot be executed sequentialIy due to the lack of pure 
delays along the loop. This problem can appear in par- 
ticular during conversion to the digital doniain of ana- 
log filter networks, or even in digital-to-digital domain 
transformations (such as frequency-warping mappings). 

If the network i s  linear, various techniques can be 
used to convert a continuous-time system into an equiv- 
alent numericat one, working either in the time or in 
the Laplace domains. As an example, wave methods [2] 
and transfer function models [3] have been widely ap- 
plied to the numerical simulation of acoustic systems. 
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Moreover, a linear network can be always rearranged 
into a new one in which delay-free paths are solved by 
composing the filters belonging to them into bigger lin- 
ear structures that "embed" the loop [ l ] .  Nevertheless 
there are cases where this rearrangement is deprecated 
(e.g., situations in which the access to the filter pa- 
rameters becomes too complicated after the rearrange- 
ment). Furthermore, the elimination of a delay-free 
path implies that all the branches belonging to it can- 
not be used any longer as input/output points where to 
injecvextract the signal tolfrom the system: this point 
is particularly relevant in the design of virtua1 musical 
instruments by physical modeling. 

When nonlinearities exist in the continuous-time 
system, however, the discretization procedure must pre- 
serve stability and must ensure a precise simuIation of 
the nonlinear characteristic. Mareover, if a nonlinear- 
ity is part of a delay-free path there is no general proce- 
dure to rearrange the loop to realize a new linear struc- 
ture in which to embed the delay-free path. 

This paper presents a general method that enables 
to model a network of one-dimensional nonlinear and 
linear blocks, even in presence of delay-free paths. The 
network structure introduced in sectlon 2 assumes that 
each block has been already modeled in the discrete- 
time domain. Moreover, we do not address stability 
issues. Section 3 discusses the case when nonlinear 
blocks are part of a delay-free loop, and provide a pro- 
cedure to compute those loops without rearranging them 
into a different topology, thus preserving their original 
position in the network in terms of inputloutput mu- 
tual relations. Strategies for the efficient computation 
on nonlinear blocks are addressed in section 4. Finally 
in section 5 we present a few applications of the pro- 
cedure to the simulation of acoustic syste.ms, that are 
currently under development. 
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2. STRUCTURE OF THE NETWORK 

A technique to compute linear delay-free paths without 
topology rearrangement was proposed in [4]. It was 
applied to warped 1IR filter computation [SI. and to 
magnitude-complementary parametric equalizers 161, 
and generalized to linear filter networks with arbitrary 
delay-free path configurations [7]. It was then extended 
to networks containing nonlinear blocks [XI. 

2.1. Linear and nonlinear blocks 

Thc network structure addressed in [ X I  and in thc rc- 
minder  of this paper comprises m linear and nonlin- 
ear blocks. Inputs and outputs to and from each block 
are indicated with z and y variables, respectively. The 
7121, I m linear blocks are defined as 

Yi[72] = biz:i[nl + q&], i = l ,  . . . ,  m~ ( la)  

qi[n] C h , i ~ i [ n  - k] + C ~ , i y [ n  - k ] ,  (1b) 

where we have assumed the ith block to have a transfer 
function ~ i ( z )  = E::, bk,,z-'/(l -E;'~ a+z-'), 
have defined an historical component 4; that collects 
all past components, and have defined bi := 41,;. 

Similarly, the nx1v = m - m ~  nonlinear blocks are 
specified by their discrete-time transfer characteristic: 

yi[n] = fi(zi[n],pi[n]), i = m L  +- 1 , .  . . ,712 (2a) 

PibI =pdz;ln- 1J ,y;[ . -~] ,p;[n-~j : . . . ) .  P b )  

zi 

k= 1 k = l  

Equations (2) imply that nonlinear blocks respect two 
hypotheses: first, every block admits the existence of a 
transfer function fi in the form ( 2 4 ;  second, the blocks 
represent non-algebraic (dynamic) elements in which 
p ;  contains the contribution of historical components 
in the function. The nonlinearity can then be evaluated 
for past input and output values, thus obtaining a new 
function in the single variable 8;. In practice this class 
of nonlinear functions is sufficiently expressive for a 
wide range of audio applications [9, IO, 1 1 I. 

2.2. Connections 

The input xi to the ith (linear or nonlinear) block is 
assumed to be a linear combination of Ri outputs from 
other blocks, possibly with the addition of an external 
input signal U ;  to the same block: 

R, 
zi[nJ =xy i , [n]+u i [n] ,  i = 1 1 . . . ! 7 n .  (3) 

k=l  

Figure 1 : Structure of a linear block. The output yi is  
a superposition of instantaneous and historical com- 
ponents xi, qi. The input is a linear combination of 
outputs from other branches and the external input U;.  

Additionally we assume that ak # i for k = 1, . . . , R, 
and for any i .  In other words, no direct connection be- 
tween yi and zi is allowed. Note that this requirement 
can be always satisfied by inserting a "dummy" linear 
block yi = xi (i.e., H;(z )  

Equations (3) define the network topology. Fig- 
ure 1 depicts the input-output configuration for a linear 
block: the historical component pi can be computed by 
feeding the filter with a null value [4]. The situation is 
more complicated for the nonlinear blocks, since the 
scheme depicted in figure 1 becomes computable as 
long as pi is known by (2b). 

1) in the network. 

3. SOLUTION OF THE SYSTEM 

3.1. Matrix formulation 

Equations ( I  a,2a,3) can be rewritten in matrix form as 

Y" = f ( ~ N [ 4 P b I ) ,  (44 
Y L b I  = BXL[nl  4- Q[nI, (4b) 
4.1 = CYbI + 44, (4c) 

where column vectors Z N , L ,  g N , L ,  p ,  q, U collect the 
corresponding components, and y, z, f are defined as 

fi ( 5 1  > P1) 
f (XN! P )  = ...  I fmN(xln,,PmN) I .  

B is a diagonal matrix containing the linear coeffi- 
cients bl , . . . , b,, and C accounts for connections: 
cij = 1 if the output from the j t h  block is connected 
to the input to the ith block, otherwise ci j  = 0. The 
assumption of no direct paths between yi and zi in (3) 
translates into the property cii = 0 for i = 1, . . . ~ m. 

The matrix C can be split into four sub-matrices 
CNN,~VL,LN,LL that account for nonlinear-to-nonhear,, 
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linear-to-nonlinear, nonlinear-to-linear, and linear-to- 
linear connections, respectively: 

where we have also split the vector U into ~ L N  and UL. 

We have shown in 181 that substitution of 14) i n  (3, 
plus some straightforward algebra, leads to the foilow- 
ing expression for the linear-block inputs: 

S L  = F,LCmf(znr,p)  -t-FLZ(CI;Lq+UL), (6) 

where we have defined the matrix F L L  := I - CLLB 
and have assumed that it is invertible. This assumption 
is not restrictive, since it can be shown that F,; exists 
if the linear part of the network is causal [7]. 

A few more algebraic manipulations lead to the 
following expression for the nonlinear-block inputs: 

XN = Wlf(zN,p) f w2q -k w3uL -k U N :  (7)  

where the W ;  matrices are defined as follows: 

W S  = C N L B F L ~  (84 
WI = W S C L N + C N N  (8b) 
w2 = W 3 C L L f C N L  (8c) 

Note that the only unknown in (7) is x ~ [ n ] .  Note also 
that if the network contains a delay-free computational 
loop and w1 # 0, then (7) defines Z N [ n ]  implicitly. 

3.2. Computation of the network 

Equation (7) defines the inputs z ~ [ n ]  to the nonlin- 
ear blocks in terms of known quantities: the historical 
componentsq[n] andtheextemal inputsuL{n],u,v[n]. 
In addition the matrix W1 isolates the instantaneous 
dependence of s l y  in] on yN in]. 

From equations (4a) and (7), one can write 

Y N b I  = f ( W l Y N [ n l  -+ &V[nl:P), (9) 

where i t N [ n ]  = W ~ q [ n ] + W ~ u L [ n ] + u N [ n ]  isagain 
a historical component, since it collects the contribu- 
tion of known quantities to the input ZN. Note that 
the only unknown in (9) is yN[n]. Similarly to equa- 
tion (7), if the network contains a delay-free loop and 
W 1 # 0 then (9) defines g N  [n] implicitly. 

We have shown in [8] that the network is com- 
putable if pN[rt] can be computed from (9). More 
precisely, the computation can be decomposed into the 
following steps (refer also to figure 2): 

sp~[n)  and yN[n] are computed from (7) and (9) 
using external inputs U[.] and historical compo- 
flems PI4 1 4\74 ; 

5~[13] is computed from (6) and yL[n]  is com- 
puted from (4b); 

p [ n  f 11 is computed from (2b) using known 
variables (as already mentioned, we do not in- 
vestigate particular forms that this equation takes); 

q[n + 11 is computed from (Ib) or, equivalently, 
by feeding each filter with a null signal [4], Note 
that no computation is needed if the filters are 
realized in transposed direct form [ l ,  71. 

4. COMPUTATION OF NONLINEAR BLOCKS 

We remark once more that in order to apply the compu- 
tational scheme outlined above one must first compute 
the outputs yyN[71] from the nonlinear blocks. 

4.1. Newton-Raphson iteration 

A strategy for solving equation (9) was proposed in [SI 
and amounts to applying the Newton-Raphson (NR) 
method to find yN[n\ iteratively. This has some sim- 
ilarity to what Bonn et al. [I21 have proposed. Note 
however that, unlike the formulation given in [ 121, the 
nonlinearity in (9) has memory due to the presence of 
the historical components p ,  The NR algorithm [13] 
search a local zero of the function 

gp(YN) = f(WlY,V + ? N i p )  - YN (10) 

A pseudocode description of the algorithm looks like 

the jacobian of gP evaluated in yNk. 
the one given in figure 3, where J k  = [&IgNk a b  )i  is 

4.2. Fixed-point iteration 

We propose here a different approach to the solution 
of equation (9), which is based on fixed-point (ET) it- 
eration [ 131. We recall that a pseudocode description 
of the algorithm looks like the one given in figure 3(b), 
where this time the function g P  has been defined as 

The problem in using FP iteration is that conver- 
gence is ensured only if the nonlinear function g P  sat- 
isfies more restrictive hypothesis. Namely, g p  must 
possess a “small” Lipschitz constant: 

112 
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Figure 2: Schematic of the proposed method. 

with 0 5 Mp < 1. We then look for an estimate of Ad. 
If f ( . ? p )  has a Lipschitz constant &&,, then 

Ilg,(d - gp(Y*) Il = 
IIf(W1Y + S N , P )  - p l Y *  + %N,P)ll I 
4 4 W l b  - Y*)Il 5 ~~PllWlIl ' IIY - Y*II. 

(13) 

Thereforegp hasa LipschitzconstantMp = &fpllW~ll. 
Moreover, recalling equations (8a,8b), and assuming 
that C N ~ '  = 0 in (8b)' one can write 

Mp I ~ ~ P I I C N L I I  . 11811 ' l lq; I I f  ItCLNII. (14) 

Providing a quantitative estimate for M from (14) is 
not trivial, and specifically IIFiLII is not easily esti- 
mated. Here we only note that the property 

Mp-O for m v b i  a + O  (15) 

holds, because llBll -+ 0, and moreover IIFLLIl -+ 1 
because FLi is a perturbation of the identity matrix. 

4.3. Discussion 

Property (14) has a straightforward interpretation: FP 
iteration improves as the weights of the instantaneous 
contributions decrease. If the filters Hi(.) have been 
obtained by discretizing a continuous-time system with 

'This Lxumption is not restrictive: if CNA, # 0 one can find 
an equivalent network with CR,V = 0, by inserting "dummy" lin- 
ear elements y, = z; between nontinear-to-nonlinear connections. 

sampling rate F,, then in general b; = O(F,-"), where 
3~ depends on the order of the discretization method. 
Therefore property (14) ensures that FP iteration can 
always be used if the sampling rate is large enough. 

Using FP rather than NR iteration is clearly advan- 
tageous in many respects. First, NR is far more expen- 
sive computationally: it requires at each iteration one 
evaluation of gp together with its m~ x m~ jacobian, 
plus inversion of the jacobian, while FP only requires 
one evaluation of g p  per  iteration. Second, NR is a 
local method and therefore convergence is not ensured 
a priori, while lT iteration converges globally on the 
interval where condition (14) holds. 

5. APPLICATIONS 

5.1. Modal synthesis 

There has recently been growing interest in model- 
ing vibrations of an elastic medium (e.g., a string) un- 
der large amplitude conditions [ 14, 151, where tension 
modulation effects as well as coupling between trans- 
verse and longitudinal modes must be considered. In 
particular, it is known that if one neglects transverse- 
to-longitudinal coupling effects, then transverse mo- 
tion in a single polarization with tension modulation 
can be described by a nonlinear PDE introduced by 
Carrier, which admits a modal representation: 

113 
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Figure 3 :  Pseudocode realizations of (a )  NR iteration 
and (b) FP iteration. The fidncrion g p  is defined as in 
equations ( lo)  and ( I  I ) ,  respectively 

where IlccII is the L2-norm of the modal displacement 
vector (see [I61 for details). Such a system is well 
suited to be realized in the discrete-time domain using 
the technique described here. Linear blocks represent 
the modes as 2nd order resonators, while suitable non- 
linear blocks account for the tension modulation effect 
represented by the tenn 1 1 ~ 1 1 .  Additionally, nonlinear 
excitation mechanisms, such as striking or bowing, can 
be naturally embedded into the computational struc- 
ture, by adding appropriate nonlinear blocks [ 171. 

5.2. Digital Waveguides 

Digital Waveguide Networks [ 18, 21 model ideal n-D 
wave propagation along a medium, and can be seen 
as linear filter networks in which adjacent scattering 
nodes are arranged in a grid and connected to each 
other via bidirectional unitary delay lines. At each 
time step, incoming signals at a node are instantaneously 
scattered to outgoing signah, that reach adjacent nodes 
at the next time step. 

It is known that 2- and 3-D waveguide mesh struc- 
tures introduce a dispersion error which causes reso- 
nance misplacement. A way of attenuating this error 
amounts to transforming pure delays into frequency- 
dependent phase shifts (2-l = A(ZI), where A is an 

allpass filter) in a way that the new filter blocks intro- 
duce the desired delay to any frequency component. 
Such a “warped” version of the 2-D triangular Waveg- 
uide Mesh (TWM) has been shown [I91 to improve 
accuracy considerably. . 

In [7] the technique described here has been ap- 
plied to the computation of the warped TWM. The 
system addressed in [7] is a special case of (4) in that 
it does not inchde nonlinear elements and delay-free 
loops occur between linear blocks, however nonlin- 
ear elements can be included in the system in order 
to account for many effects. As an example, kettle- 
drum simulation has been obtained by coupling a ket- 
tle model with a TWM membrane model, by means of 
loaded scattering junctions [20] that include a spring- 
mass system accounting for the frequency-varying air 
density which aligns resonances into an harmonic se- 
ries in kettledrums [3]. Such a madel can be consid- 
erably improved by substituting the simple (linear) air 
density function previously used in those models with 
a more realistic. nonlinear law. 

6. CONCLUSION 

We have presented a general procedure for the com- 
putation of a class of networks composed by nonlinear 
and linear blocks that satisfy weak hypotheses. The 
proposed solution does not require any network rear- 
rangement and preserves the original topology. Each 
computational block can therefore be modeIed inde- 
pendently. Then, provided that a connection topology 
is specified, the global computational structure for the 
complete system is constructed automatically using the 
procedure given in section 2. 

We have focused on the nonlinear blocks, and pro- 
posed a scheme based on fixed-point iteration that d- 
lows efficient computation of the nonlinearities, thus 
showing that the network can be computed even in 
the presence of delay-free paths that involve nonlin- 
ear blocks. When applied to physical models of acous- 
tic systems, the proposed procedure allows for a highly 
modular formulation in which each computational block 
has a clear physical meaning. 

In the context of this research, the most desirable 
feature of this methodology would be to establish gen- 
eral criteria to guarantee the preservation of the struc- 
tural properties of the system while moving from the 
analog to the digital domain, in a way that at the end 
of such a translation each filter block has a clear phys- 
ical meaning. We are currently working on extending 
the scope of the method in this direction. 

114 
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