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Abstract
A physically-informed glottal model is proposed; some physical information is retained in a linear block
that accounts for fold mechanics, while non-linear coupling with the airflow is modeled using a regressor-
based mapping. The model is used in an identification/resynthesis scheme. Given a real signal, system
parameters are estimated via non-linear identification techniques; then the model is used for resynthesizing
the signal. With a proper choice of the regressor set the system accurately fits the target waveform and is
stable during resynthesis. Physical parameters can be used to change voice quality and speaker identity.

INTRODUCTION

Features of the glottal source signal (i.e. the glottal flow) carry most of the information that
characterizes voice quality and speaker identity [1, 2], and accordingly research on source models
is becoming increasingly important in speech synthesis. Parametric models fit the glottal signal
with piecewise analytical functions, using a small number of parameters. As an example, the
Liljencrants and Fant (LF) model [3] characterizes one cycle of the flow derivative using as few as
four parameters. The LF model has been successfully used for fitting flow derivatives computed
by inverse filtering real utterances [2, 4, 5]. Physical models describe the glottal system in terms
of physiological quantities. The Ishizaka and Flanagan (IF) model [6] treats one vocal fold as
two coupled mechanical oscillators, driven by the glottal pressure. Physical models capture the
basic non-linear mechanisms that initiate self-sustained oscillations, and can simulate subtle
features (e.g. interaction with the vocal tract); however they typically involve many parameters
(19 in IF) and are not suitable for identification purposes.

The model presented here relies on a hybrid approach. Its structure is similar to that of IF
(and other musical non-linear oscillators [7]): the vocal fold is treated as a linear harmonic oscil-
lator, and a non-linear block accounts for interaction with glottal pressure. Unlike IF, however,
no physical information is retained in the non-linear block. This is treated as a black box and de-
scribed by a regressor-based mapping. As such, the model can be said to be physically-informed
rather than really physical. This allows us to exploit some advantages of both parametric and
physical approaches. Given a flow signal, weights for the regressors are estimated using non-
linear identification techniques in order to fit the glottal waveform. After identification the
system is used for resynthesis and can be controlled using its physical parameters.

PHYSICALLY-INFORMED MODEL

We describe the model in the discrete-time domain; a schematic representation and a block
diagram are depicted in Fig. 1. Glottis is treated as a lumped (+,+) valve, this notation
meaning that the valve tends to open when an overpressure is applied from both upstream and
downstream sides (see Fletcher [8]). We assume the valve to be perfectly symmetrical, so that
only one fold needs to be modeled. During the open phase each vocal fold is described as a linear
second order oscillator, whose transfer function is denoted by Hr. Collisions between the two
folds are treated as in the IF model [6]: a restoring contact force is added, made of an elastic and
a dissipative component. Equivalently, during collisions the resonance fr of Hr is increased and
its quality factor qr is lowered. Glottal flow is assumed to depend non-linearly on glottal area,
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Figure 1: Schematic representation (left) and block diagram (right) of the model; fr, qr are the resonance
frequency and the quality factor of the mechanical oscillator; x, u, p, p± are fold displacement, flow, glottal
pressure and pressure waves to/from the vocal tract, respectively; Hr, F,R, Z0 are the vocal fold oscillator,
the non-linear black box, the vocal tract reflectance and the wave impedance at tract entrance, respectively.

or equivalently on fold displacement. Physical models, such as IF, describe this dependence
analytically using very crude simplifications (e.g. quasi-steadiness of the flow). Differently from
IF, we choose a black box approach, in which a non-linear regressor-based mapping F relates
flow to fold displacement. The inputs to the non-linear block are x(n) and x(n− 1) [9]:

Z0u(n) =

{
F (n) =

∑M
i=0wiψi(n) if x(n) > 0,

0 if x(n) ≤ 0,
(1)

where x is fold position and ψi(n) = ψi (x(n), x(n− 1)). Several choices are possible for the
regressor set {ψi}, here we use a third order polynomial expansion in x(n), x(n− 1). Lastly, the
glottal pressure p that drives the linear oscillator is related to glottal flow through the input
impedance Zin(z) of the vocal tract. Equivalently, wave variables p± = (p±Z0u)/2 can be used:
then p± are related to each other through the vocal tract reflectance R(z).

A final remark concerns the insertion of a fictitious delay element z−1 (see Fig. 1): this
is needed in order to make the model computable. More accurate and elegant techniques are
available [10] for dealing with such computability problems. However, we claim that in this case
the insertion of z−1 does not deteriorate or anyhow affect properties of the system; the reasons
for this are explained in the next section.

IDENTIFICATION

We now address the following problem: given a target glottal flow waveform Z0ū (be it synthetic
or inverse filtered), we want to identify the model so that the output Z0u from the non-linear
block fits the target as closely as possible. The problem is not trivial, since we have to identify
a physical model of the source rather than a parametric model of the signal [2, 4, 5].

We used both synthetic and real flow waveforms; in both cases a single period was chosen and
a periodicized signal was constructed and used as target. Synthetic signals were produced using
the model described in [11], while inverse filtering was computed using an automatic method
described in [12]. This method estimates the glottal flow directly from the acoustic speech
pressure waveform using a two-stage structure, where LP analysis is used as a computational
tool. The utterance analyzed in the present study is a sustained /a/ vowel produced in normal
phonation by a male speaker. The system is identified in three main steps (see Fig. 2).
• Step 1. From the target Z0ū, the corresponding pressure signal p̄ is computed. In order to
do that, we arbitrarily choose the reflectance R to be that of a uniform vocal tract: R(z) =
z−2mLZload(z), where mL defines the length (in samples) of the tract and Zload has a low-pass
characteristics. We would like to point out that, in doing this, we are not looking for physical
insight: all we want is a pressure signal that provides plausible excitation to the vocal fold.
• Step 2. The linear block Hr is driven using p̄, and its output x̄ is computed. Open- and
closed-phase resonances for Hr are chosen interactively, in such a way that the open and closed
phase for the output x̄ match those of the target flow ū (see Fig. 2).
• Step 3. We now have a complete I/O description of the non-linear block. Then, during the
open phase weights w = [w0 . . . wM ] for the regressors ψi are identified by choosing a training
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Figure 2: (a) Target Z0ū (solid gray, computed from real speech by inverse filtering), synthesized pressure
p̄ (dashed) after Step 1, output x̄ from linear block (dotted) after Step 2, output Z0u from non-linear block
(solid black), after Step 3. (b) Derivative of the target flow dū/dt (solid gray) and derivative of output
from the non-linear block du/dt (solid black).

window with starting time l and length m, and defining the training sets

T u = [ū(l + 1), ū(l + 2), . . . , ū(l +m)] , T ψ =

 ψ0(l + 1) · · · ψ0(l +m)
...

. . .
...

ψM (l + 1) · · · ψM (l +m)

 . (2)

From Eq. (1), the weights w must solve the system w · T ψ = T u. The LS solution of such a
system is known [13] to be

w = T u · T +
ψ (3)

where the symbol + has the meaning of pseudo-inversion. It is now clear that the insertion of
z−1 does not deteriorate accuracy of the model: given the structure in Fig. 1 and a flow signal,
the identification of the non-linear block automatically takes into account the z−1 element.

RESULTS AND DISCUSSION

Figure 2 shows that the identification procedure allows for accurate fit of the target. The
performance is comparable to that obtained from LF-based fits [2, 4, 5]. In particular from Fig.
2(b) one can see that in the closing phase both the width and the amplitude of the negative
pulse in the derivative are well approximated. The large bandwidth (11.025 kHz in this case),
and the consequent noise in the flow derivative waveform, does not affect the identification. This
is because the identification target is the glottal flow itself, rather than its derivative; also, the
LS solution given in Eq. (3) is robust with respect to noise. We note that large bandwidths can
deteriorate the performance of typical LF identification techniques [4].

After identification we study the behavior of the model in autonomous evolution. The system
is seen to reach steady state self-sustained oscillations after a short transient. The steady state
waveform coincides with the one obtained from identification. If we then adjust the values
for some of the parameters, the system exhibits robustness to such changes. Fig. 3 shows an
example where fr is increased after the system has reached steady state: as a consequence the
pitch of the signal increases correspondingly, while the flow shape is preserved. An increase in
amplitude during pitch transition can also be noticed from Fig. 3; after transition maximum
amplitude turns back to its original value.

A major limitation in our identification procedure is that we are not able to guarantee a priori
that the identified system is stable during resynthesis. In order to do that different approaches
can be used, such as the harmonic balance technique [14] or the imposition of appropriate
conditions on the gradient ∇F [15], and future work shall concentrate on this issue. Moreover,
problems are encountered when strong ripples (due to interaction with tract formants) appear
on the opening phase of the target signal: these affect heavily the accuracy of identification. A
possible solution to this could be to focus accuracy on the closing phase. This portion is the
most important to be fitted accurately, since it defines most of the spectral (and perceptual)
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Figure 3: Resynthesis and pitch shift; (a) target flow ū (solid gray) and synthesized flow u (solid black);
(b) target flow derivative dū/dt (solid gray) and synthesized flow derivative du/dt (solid black).

features of the signal. One more open problem is concerned with identification of non-periodic
signals: in this case a straightforward strategy is to identify system parameters once for each
period of analyzed data (as already done with the LF model [2]). But we can also expect that,
with a proper choice of the regressors, the system is able to “follow” a non-periodic signal with
a single set of parameters. Finally we remark that our identification procedure is far from being
automatic: while the weights {wi} are estimated automatically from Eq. (3), the linear filter
Hr is adjusted interactively.
Acknowledgments: this research has been partially funded by the Academy of Finland (“Sound
Source Modeling” project).
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