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ABSTRACT broad categoriesstructural invariantsspecify individual

A model for physically based synthesis of collision sounds propertles_ of O.bJeCtS such as size, Shap?’ matéssalsfor-
mational invariantscharacterize interactions between ob-

is proposed. Attention is focused on the non-linear contact.

force, for which both analytical and experimental results are ][(;Ct; (g.giocolllﬁlﬁg?/’efrslﬁtcl)cv)\?ns’tr?z:tdof/zrcs)in% Ili:faii?jenavi?égls
presented. Numerical implementation of the model is dis- > ' = "~ b pny

. . . models are able to convey information on structural invari-
cussed, with regard to accuracy and efficiency issues. As an

anolication. a hvsically based audio effect is presented ants (shape, size and materials) and to synthesize “cartoon”
P »aphy y P " sounding objects where these invariants can be controlled.

In this paper attention is turned to transformational invari-
1. INTRODUCTION ants, in particular to collision events. Freed [12] has re-
cently addressed this topic using non-synthetic sounds. We
Recent research in physically based sound modeling hasse a non-linear contact force model originally proposed by
stressed the limitations of signal-based approaches and thearhefka and Orin [13], and we apply it to a very simple
need for deeper investigation of the physical mechanismssystem where a lumped hammer strikes a lumped resonator.
involved in sound generation. An important finding from The basic properties of the model are investigated both ana-
ecological psychology studies [1, 2] is that listening sub- |ytically and experimentally. The simple structure we have
jects often tend to describe sounds in terms of causing eventghosen allows us to study the influence of physical parame-
Gaver [3] refers to this attitude as “everyday listening”. A ters (hammer and resonator masses, elasticity and damping
similar description of synthesis algorithms in terms of gen- coefficients of the non-linear contact force) on the system
erating phenomena can therefore help in preserving per-hehavior. Contact time, in particular, can be an important
ceived timbre identity, in providing effective simulation of cue for the perception of collision. Numerical implemen-
natural-sounding dynamics and in relating control parame-tation issues are discussed, and we show that system non-

ters of the synthesis algorithms to physical quantities. linearities can be handled efficiently without any significant
So far, research on physical models has focused mainlyloss in accuracy.

on specific classes of systems, namely musical instruments.
Excitation mechanisms are typically described by means
of non-linear lumped systems, and converting the analog
models into the digital domain requires the development
of suitable numerical methods: general and computation-
ally efficient solutions are provided for typical structural
problems [4]. More recently, the physical approach has re-
ceived attention for the sonification of multimedia environ-
ments and the design of auditory icons [5]; synchronization
with graphic models is straightforward, and consequently a
high degree of coherence and perceptual consistency can b
achieved [6]. There is therefore the need for general mod-
els, which are able to reproduce the behavior of wide classes  The model and the implementation strategy are briefly
of systems and whose control strategies take both physicalliscussed in Sec. 2. Analytical results are presented in Sec.
and perceptual aspects into account. 3, while Sec. 4 outlines the main experimental results on
According to ecological acoustics [3], the physical prop- the digital model. A digital audio effect derived from the

erties involved in sound generation can be grouped into twomodel, theFonoBumpis presented in Sec. 4.2.

Although performed using elementary resonator mod-
els, this investigation can be helpful also for improving ex-
isting contact models in more complex systems: one ex-
ample is hammer-string interaction in piano models, where
contact time is a key feature for sound quality. The well
known Stulov model [14] for piano hammer felts provides
a realistic description of hysteretic contact forces, and is
successful in fitting real data. However, recent research by
Giordano and Mills [15] has questioned to some extent its
general validity, suggesting the need for further investiga-
tions on alternative piano hammer models.
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quantity  symbol unit whereA = —\/m;, andK = —k/my. The integral in Eq.
No. of oscillators N (2) can be computed explicitly and, can be written as a
Oscill. positions x4 (=1...N) [m] function ofuv:
Oscill. velocities i, (l=1...N) [mls]
Hammer position zj, [m] =
Hammer velocity @, [m/s] oh(v) = {(LT) <A(v — vin) — K log K+ Av ﬂ oF
Penetration o=z, — Y1 zor  [M] A K+ Avin 3
Penetration velocity & = & — Zl]\;l Tor  [M/S] . . (3)
Oscill. masses m, [Ka] From Eqg. (1), it can be seen thAtbecomes inward (or
Oscill. center freqs. wo [rad] sticky) if v < vy, := —1/u. However, this never happens
Oscill. quality factor g, for a trajectory with initial conditions;;, = 0, v = v;,,, @S
Oscill. damping coeffs. gor = woi/qo [rad] shown in the phase portrait of Fig. 1(a): the line= vy,
Hammer mass my, (K] (corresponding to the trajectory where the elastic and dis-
Non-linear exponent o = 2.8 o ;
. o sipative terms cancel) separates two regions of the phase
Elastic constant & [N/m<] d the | N tered by th
Damping weight A [Ns/mf+1] space, and the lower region is never entered by the upper

Viscoel. charact. = \/k [s/m] trajectories. Figure 1(b) shows the penetration/force char-
acteristics during collision. Note that the dissipative term
introduces hysteresis. Once again, it can be noticedfthat
Table 1:Symbols used throughout the document. never becomes zero for positive penetrations; this is a sig-
nificant advantage with respect to the Stulov model [14].

2. THE MODEL

We first address the non-linear model of the contact force; 2.2. Resonators

then describe hammer interaction with a simple resonatorrna hammer model described in the previous section was
model. Table 1 summarizes the main variables and paramey,cad in a recent paper [8] to provide excitation to a second
ters used throughout this section. order oscillator. In this case the coupled system is described

by the equations
2.1. Excitation

Based on a well known model in impact mechanics, Marhe- T =%Th = o 1

fka and Orin [13] proposed a contact model for dynamic Fo + Godo + wir, = —— f(2,3) )
simulations of robotic systems. If the contact surface is 1 Mo

small (ideally, a point), the contact for¢fetakes the form Zp = mfhf(% )

flz,2) = —ka® — A% = —ka*(1 4+ pz), (1)
) _ ] We have shown in [8] that computational problems oc-
where variables and parameters are listed in Table 1. Thegyr in the numerical hammer-oscillator system, that are ul-

value of the exponent depends only on the local geome-  timately due to the non-linear nature of the contact force;
try around the contact surface. In the following we choose these can be handled using the so called K method, recently
a = 2.8, which is close to values found in piano hammer proposed by Borin et al. [4]. The method allows to solve
felts. Note that the force model includes both an elastic non-computable loops in an efficient and accurate manner.
component:z* and a dissipative tertz®i; moreover, the |y our implementation,f is computed iteratively at each
dissipative term depends on bothand:, and is zero for  time step using the Newton-Raphson method (see [8] for de-
zero penetration. tails). Since most of the computational load in the numerical
Marhefka and Orin have studied the collision of a ham- system comes from the non-linear function evaluation, the
mer onto a massive surface, which is assumed to be im-gpeed of convergence (i.e. the number of iterations) of the

movable during collision; when the two collide, the hammer Newton-Raphson algorithm has a major role in determining
initial conditions arer;, = 0 andz;, = v;, (normal veloc- efficiency.

ity before collision). Since the surface does not move, the 14 resonator model used in this paper is slightly more
hammer trajectory is described by the differential equation complex than the one in Egs. (4). The resonator is treated

mpip = f(zn, n). Definev = iy, thenitis shownin [13]  pore 59 4 set aF second order oscillators, accounting for a

that dv o (Av+ K)z set{w, }iY, of partials of the resonator spectrum. The re-
dr Th? sulting system has the same structure as in Egs. (4), except
b T . 2 thatz, is now a vectotz, = [z.1, . .. z,n]” and the com-
/ (Av + K) = /xhdx’ pression: is given byz = xj, — 31| .. The second of
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Figure 2: A transient attack from the model: (a) hammer
% T : 3 y 5 6 7 and resonator displacements and Zf\ll zo1; (b) contact
penetration [m] x10™ (b) -

force f during interaction.

Figure 1: Collision of a hammer with a massive surface
for variousv;,,’s; (a) phase portrait, (b) penetration/force

characteristics. Values for the parameters ang = 102 position-dependent interaction. The numerical implemen-
[Kgl, ¥ = 1.5- 10" [N/m®], u = 0.6 [s/m], a = 2.8, tation used in [8] for a single oscillator can be extended to
n=1...4[m/s]. the N-dimensional case of Eq. (5) with little effort. Again,

at each time steg(z, &) is computed iteratively using the
Newton-Raphson method. Figure 2 displays an example of
Egs. (4) is then turned to the diagonal system attack transient, as obtained from the numerical model.
-1

me

Zo + Goto + N2x, = Feg(@, &), fog= : f ()
my* Contact time (i.e. the time after which the hammer sepa-

rates from the struck object) has a major role in defining the

3. ANALYTICAL RESULTS

o 0 L - . o
Wor 1 spectral characteristics of the initial transient. Qualitatively,
where Qo = v Go= "D a shortt d impulse-lik ient with
% o corresponds to an impulse-like transient with a
0 WoN rich spectrum, and thus provides a bright attack; similarly,

The simple structure described in Eqg. (5) provides a high a long¢, corresponds to a smoother transient with little en-
degree of controllability. The frequenci¢s,;}i¥, can be ergy in the high frequency region. Therefdgeinfluences
chosen to reproduce spectra corresponding to various gethe spectral centroid of the attack transient; this latter pa-
ometries (e.g. free and clamped bars, membranes, platesyameter was found by Freed [12] to be strongly correlated
while the quality factorgy, controlling the decay time of  to the perceived hammer hardness.

the resonator response, can be mapped into perceived ma- In this section we study analytically our model in the
terial properties [8]. The contact forcg,; exciting the case of a hammer hitting an immovable surface; as a novel
resonator can be generalized to allow control on the en-result, we derive an equation which relatggo the model
ergy amounts provided to each oscillator, thus simulating parameters.
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Figure 3:Graphic study of,,;. Values for the parameters
are the same used in Fig. 1.

3.1. Output velocity

Marhefka and Orin [13] find an expression for the normal
velocity after collisiorv,,,; in the limit of smallu. However,

it is possible to study the behavioraf,, also in the general
case. Indeedy;, andwv,,; correspond to the points where
xp = 0, i.e. to the roots of the right-hand side in Eq. (3).
Therefore, from Eq. (3),.: is found as

K+ Avout
K + Avm

xh(vout) = A(Uout - Uin) - KlOg

eMVout eHVin

- 1+Nvout B ]-+,U4U1n

(6)
A first result is already evident from this equatian;,; de-
pends only on the viscoelastic characteristicand the in-
put velocityv;,,; there is no dependence on the spring stiff-
nessk, the hammer mass;,, the non-linear exponent.
A graphic study of the dependencewf,; onv;,, u can be
performed by rewriting the last equation as
el“’in

HVout

e =a (14 pvout), where « >1. (7)

Thereforev,,,; is the intersection of the exponential on the
left-hand side and the linear function on the right-hand side,
as shown in Fig. 3. The velocity,,; can be found numeri-
cally as the root of Eq. (7).

3.2. Contact time

Havingv,.:, we can now computg. If collision occurs at
t = 0, then the contact time is trivially given Ity = fot“ dt;
moreover, sincelt = dxj /v, from Eq. (2) itis easily seen

that

dv Y e dv
(Av + K)a¢ = = ,/Um (Av+ K)ag'
(8)
Using Eq. (3)z§ can be rewritten in this integral as a func-
tion of v; thus, the integrand function depends onlywon
Substitutingy = A/K, we can compute, from Eqg. (8)
as a function of the parameter get,, k, 1), together with
the normal velocities before/after collisidn;,,, vo: ). Few
calculation steps yield to
) ST

o= ()

/v (1 ) [~p(v = vgn) + log |

_ d:Th

dt
v

12

a—+1

™
k

9)

o

] a+1

It can be checked that the constant outside the integral has
dimension [8/m], while the integral itself is a velocity [m/s];
thus the right-hand side has dimension [s]. Equation (9)
states an important result: the contact titpelepends only

on v;, and two hammer parameters, i.e. the viscoelastic
characteristig: and the ration;, /k. Some remarks:

e the integral has two singularities at the boundatigs
andv;,. However, it can be easily checked that at these
boundaries the integrand function converges asymptotically
t0 1/ (v—vous ) (1) andl/(v—wv;,, )/ @+ respectively.
Therefore the integral always takes finite values;

o the integral depends only an,, andp. This is a conse-
quence of Eq. (7), which states that,; depends only op
andv;,,;

¢ the constant outside the integral depends only.cand

the ratiom; /k. Since neithern,, nor k affect the value

of the integral, we can state that the power-law dependence
to(mp/k) ~ (my/k)Y/ @+ holds;

e the dependencg(u) is less easily established analyti-
cally; however, numerical integration of Eq. (9) can be used
in order to study such dependence. Note that the singulari-
ties atv,¢, v, IMpose some additional care in the integra-
tion near the boundary.

The results presented in this section emphasize a second
advantage in using Eg. (1) instead of the Stulov model [14]:
the explicit dependence of the forgeon the system state
(x,2), as stated in Eq. (1), allows the analytical study re-
sulting in Eg. (9). A similar analysis is not possible with
the Stulov model, where the only results about contact time
are obtained from numerical simulations.

14pv
14+pvin

out

4. NUMERICAL SIMULATIONS

Following Giordano and Mills [15] we define two types of
numerical experiments. In a first setup the hammer strikes
an immovable surface and rebounds from it: this is the same

DAFX-4 Revised Version



Proceedings of the COST G-6 Conference on Digital Audio Effects (DAFX-01), Limerick, Ireland, December 6-8,2001

3 -3

x 10 x 10
161 i . 451 I3
o mJksimulations o m,/k simulations 0© © m =10~ [Kd]
U psimulations 4| — m /k theoretical | .- ©}
L . h (0]
1.41| — theoretical 0©
35f s 5 Y
12h O,o 00 oY m=2 Cno ~ [Kg]
3 go) L g© .
O o 0)
@ 4t - o e =
L —25¢ o 5© 500 m =5 10" [Kg]
- o) o 00©
o 0©° Om = -2
0.8l 2t 0 g 50 OOOOO m =1 [0 [Kg]
o _© o o [e) o0 -2
o 0,500 ©0009m =5T10" [Kg]
15 6o O 8 6© 600092 o
0.6 30 5.0
[S)
12888
0.4 i i i i j
0 0.2 04 06 0.8 1 05 i i i : ‘ ‘
Norm. parameters 0 0.2 0.4 0.6 0.8 1 1.2

Norm. mh/k

Figure 4: Dependence of, on my/k and u for Type |

simulations (solid lines computed from Eq. (9), discrete Figure 5:Dependence af, onmy,/k for Type Il simulations
points obtained from simulations). The horizontal axis is in (solid line computed from Eq. (9), discrete points obtained
normalized Coordina’[eS, ranges of the two parameters arefrom SimUlatiOﬂS). The horizontal axis is in normalized co-
mn/k € [6,300] - 10712 [Kg m®/N], p € [0.01,1] [s/m]. ordinates, withm;, /k € [6,300] - 10712 [Kg m/N]. Other
Other parameters are as in Fig. 1. parameters are as in Fig. 1.

setting used in Sec. 3 for deriving Eq. (9). In the follow- it can be noticed that the general dependef¢er, /k) is

ing we will term this a “Type I” experiment. A second ex- always similar to that observed in Type | simulations. More-
perimental setup involves collision between the non-linear OVer,fo is longer for light resonators and tend to the theoret-
hammer and the resonator described in Sec. 2.2; in the fol-ical curve of Eq. (9) asy increases. This is not surprising,

lowing, this is referred to as “Type II” experiment. since Type | simulations are equivalent to Type Il simula-
tions wheremy is given an infinite value.

4.1. Experimental results

. . 4.2. The FonoBump
Here we analyze experimentally the influence of the model

parameters othy. Several simulations were run with vary- The iterative Newton-Raphson strategy described in Sec. 2
ing my, /k andy, and automatic analysis was developed for provides an efficient implementation for the discrete-time
computingt, from both Eqg. (9) and simulation signals. The system. In order to develop a real-time model, it is essen-
sampling rate wag’; = 44.1 [kHz], and each simulation tial that the number of iterations remains small in a large
was5 - 1072 [s] long. For Type Il simulations, the resonator region of the parameter space. We analyzed Type Il simula-
was givenN = 3 partials. tions, where both the hammer and the resonator parameters
We first studied Type | experiments, and results for this varied over a large range, and in every conditions the algo-
case are summarized in Fig. 4. Both the theoretical behav-rithm exhibited a high speed of convergence; the number of
ior predicted by Eq. (9) and extracted data from numerical iterations was observed to be never higher than four, even
simulations are plotted: it can be seen that there is excellentwhen the Newton-Raphson algorithm was given extremely
accordance between theory and experimental results. Orlow tolerance errors~ 10~13).
the one hand, this result confirms the validity of the analyt- Matthias Rath developed a real-time implementation of
ical study presented in Sec. 3; on the other hand, it assessethe model as #&D module [16]. There, an external driv-
guantitatively the accuracy of the numerical system. ing force signal can be applied to the hammer at audio rate.
When analyzing Type Il simulations we found some- If the driving force is an audio signal, an interesting digi-
what different results, since in this case the contact time de-tal audio effect is obtained, that we nanfemhoBump The
pends on both the hammer and the resonator parameters. lhammer strikes the resonator repeatedly, forced by the au-
particular it was found that, for any parameter settinds dio signal, and bounces back due to the contact fircehe
always longer than in the Type | case. Figure 5 plots resultsnon-linear nature of the interaction provides the effect with
for them,, /k parameter, with various resonator massgs a variety of nuances. The model parameters can in principle

DAFX-5 Revised Version



Proceedings of the COST G-6 Conference on Digital Audio Effects (DAFX-01), Limerick, Ireland, December 6-8,2001

allow physically-based control of the effect in real-time, al-
though the problem of finding effective gesture/parameters

mapping strategies has still to be addressed.

5. CONCLUSIONS

We have discussed the use of a non-linear contact model in
sound synthesis of collision sounds, focusing on the influ-
ence of physical parameters in perceptual features of the in-
teraction; contact time has been investigated in detail, since [6]
this parameter affects the spectral centroid of the transient
attack and influences the perceived quality of the collision.

We have discussed efficiency and accuracy properties of the
numerical system, and have shown that it can be imple- [7]
mented in real-time on a general purpose platform; as an
application, we have presented thenoBumpaudio effect.

A number of issues are left for future research.

The problem of position-dependent interaction has still
to be addressed in detail. Intuitively, such a dependence can
be achieved by changing the amounts of energy provided
to each second order oscillator depending on contact posi-
tions. However, it is not trivial to integrate this control in

the numerical system in a rigorous manner.

Listening tests have to be performed in order to investi-
gate quantitatively how the model parameters and the spec-
tral content of the excitation signal map into perceived prop- [1
erties of the sound source (analogously to the investigation

by Freed [12] on perceived mallet hardness).

We have shown that the proposed contact model has
some similarities with the piano hammer felt model pro-
posed by Stulov. Further study is needed to compare the
two, and to discuss the use of our model in physically based

synthesis of the piano.
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