
Chapter 4

Sound in space

Federico Avanzini

Copyright c⃝ 2005-2019 Federico Avanzini
except for paragraphs labeled as adapted from <reference>

This book is licensed under the CreativeCommons Attribution-NonCommercial-ShareAlike 3.0 license. To
view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/, or send a letter to

Creative Commons, 171 2nd Street, Suite 300, San Francisco, California, 94105, USA.

4.1 Introduction

If we think at the process of sound production in the light of the classic source-medium-receiver model
of communication theory, we can say that in Chapters Sound modeling: signal based approaches and Sound modeling:

source based approaches we have studied models for the source of sound signals. We now move a step further
and examine the effects of the medium in which sound propagates, and the receiver, specifically a human
receiver with two ears.

One of the most frequently effects produced during sound propagation in a medium is reverberation,
which is caused by physical surfaces that partly absorb and partly reflect sound waves in air. We will
first examine in Sec. 4.2 the physical and perceptual background of reverberation. The knowledge gained
on these aspects will enable us to study some of the most known reverberation algorithms in Sec. 4.3.
Finally we will review in Sec. 4.4 more recent approaches to synthetic reverberation, that are based on
feedback delay networks and waveguide meshes.

A similar path will be followed in examining the receiver block. We will first examine in Sec. 4.5
how and to what extent a human receiver with two ears can gain information about the incoming direction
and distance of an emitted sound, and what are the most relevant perceptual effects involved in spatial
hearing. Armed with this knowledge we will address in Sec. 4.6 the most popular 3-D sound processing
techniques by which a virtual sound source can be positioned in some point of the space around a listener.
We will in particular focus on binaural techniques, which assume that two independent sound signals are
delivered to the two ears, e.g. through headphones.
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4.2 Reverberation: physical and perceptual background

Almost any sound of our everyday life is produced in a reverberant environment, be it the office at
work, the living room, or a concert hall. An emitted sound is therefore always accompanied by delayed
versions, caused by reflecting surfaces and coming from many different directions. We talk about re-
verberation when the reflections occur soon after the emitted sound, so that they are not perceived as
separate sound events, and instead have the effect of “coloring” the original sound and modifying its spa-
tial characteristics. In this section we first review the physical process of reverberation, then we examine
the most perceptually salient characteristics of reverberation. Having knowledge of both these aspects
are essential in order to develop algorithms for synthetic reverberation.

4.2.1 Basics of room acoustics

For our purposes a room is a physical enclosure that contains an elastic medium (generally, air) through
which acoustic disturbances can be propagated. It also has a boundary (the room walls) that limit the
propagation of these acousticdisturbances. In this view a room is simply an acoustic resonator, similar
to the string that we have examined in Chapter Sound modeling: source based approaches, but with at least two
important differences: first, it is a 3-D resonator, because sound can propagates in all spatial directions,
and second, its physical dimensions are much larger than typical dimensions of a string in a musical in-
strument. Put in another way, its physical dimensions are much larger than typical acoustic wavelengths.

4.2.1.1 Sound waves in a closed space

We have analyzed in Chapter Sound modeling: source based approaches the D’Alembert equation which describes
sound propagation within a perfectly elastic medium. While the 1-D D’Alembert equation can be used
to model strings or acoustic tubes, the 3-D equation describes sound propagation in space:

∇2p(x, t) =
1

c2
∂2p

∂t2
(x, t), (4.1)

where x represents Euclidean coordinates in space and p is the acoustic pressure. The symbol ∇2 =
∂2

∂x2 + ∂2

∂y2
+ ∂2

∂z2
stands for the 3-dimensional Laplacian operator. As opposed to mechanical vibrations

in a string or membrane, acoustic vibrations are longitudinal rather than transversal, i.e. the air particles
are displaced in the same direction of the wave propagation. The constant c has the dimensions m/s of a
velocity and indeed is sound velocity in air.

By adding suitable boundary conditions we can gain a description of waves of particle velocity within
a three-dimensional enclosure. Let us start with the simplest possible 3-D enclosure, a rectangular room
with perfectly smooth and rigid walls. More precisely, we define the domain D of the problem to be a
parallelepiped with edges of length Lx, Ly, Lz:

D = {x = (x, y, z); 0 ≤ x ≤ Lx, 0 ≤ y ≤ Ly, 0 ≤ z ≤ Lz} (4.2)

Let B be the boundary of D, i.e. the rigid walls of the parallelepiped. The boundary conditions require
the air velocity perpendicular to each wall to be zero on B. Equivalently, if we consider acoustic pressure
p then the conditions on the boundary are ∂p/∂x(B) = 0. Then one can provide an analytical solution
of Eq. (4.1) in terms of stationary modes of the kind

p(x, t) = s(x)q(t) (4.3)
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Figure 4.1: Plane wave loops (1, 1, 0) and (3, 2, 0), as seen on the (x, y) plane.

Following a line of reasoning analogous to the 1-D case , one can determine the spatial shape s(x) of the
modes as

sn,m,l(x) =

√
2

Lx

√
2

Ly

√
2

Lz
cos
(
k(x)n x

)
cos
(
k(y)m y

)
cos
(
k
(z)
l z

)
, (4.4)

where we can define the wavenumbers kn,m,l as

kn,m,l =
(
k(x)n , k(y)m , k

(z)
l

)
with k(x)n =

nπ

Lx
, k(y)m =

mπ

Ly
, k

(z)
l =

lπ

Lz
. (4.5)

Analogously to the 1-D case discussed for modal synthesis in Sound modeling: source based approaches, these
functions are a orthonormal basis for the space L2(D). The temporal part is subsequently derived as

qn,m,l(t) = cos (ωn,m,lt+ ϕn,m,l) , with ωn,m,l = c

√[
k
(x)
n

]2
+
[
k
(y)
m

]2
+
[
k
(z)
l

]2
. (4.6)

Differently from the 1-D case, and analogously to the 2-D case of the rectangular membrane, the fre-
quencies ωn,m,l are a non-harmonic series. However each of the three spatial directions (where only one
of the three indexes (n,m, l) is varying) is associated to a harmonic subseries. Analogously to the 1-D
case a mode (n,m, l) has nodal surfaces, which corresponds to the regions where sn,m,l(x) = 0. It is
easy to see that these are planes parallel to the walls of the room.

A normal mode pn,m,l(x, t) = sn,m,l(x)qn,m,l(t) can be written as a superposition of waves traveling
in different directions. This can be seen through multiple application of Werner formulas1, which yelds

pn,m,l(x, t) = . . . =

√
2

Lx

√
2

Ly

√
2

Lz

∑
cos
[
k±±±
n,m,l · x± (ωn,m,lt+ ϕn,m,l)

]
, (4.7)

where we have defined k±±±
n,m,l = (±k(x)n ,±k(y)m ,±k(z)l ), and where the summation has to be extended

over the sixteen possible combinations of signs in the argument. This means that for each mode there are
eight directions of wave propagation, each one associated to one k±±±

n,m,l vector. Figure 4.1 visualizes the
wavefronts for the modes (1, 1, 0) and (3, 2, 0): these result in plane wave loops having constant length.

12 cosα cosβ = cos(α− β) + cos(α+ β).

This book is licensed under the CreativeCommons Attribution-NonCommercial-ShareAlike 3.0 license,
c⃝2005-2019 by the authors except for paragraphs labeled as adapted from <reference>

http://www.creativecommons.org
http://creativecommons.org/licenses/by-nc-sa/3.0/


4-4 Algorithms for Sound and Music Computing [v.February 22, 2019]

k1,1,2

ky

kx

kz

(a)

ky

kx

kz

Vf

V0

k

(b)

Figure 4.2: Estimation of modal density; (a) distribution of wavenumbers on a regular point lattice, (b)
estimation of the amount of wavenumbers contained in a spherical octant of radius k.

4.2.1.2 Modal density

We now want to derive an estimate of the modal density, i.e. the average density of eigenfrequencies on
the frequency axis.

From Eq. (4.5) one observes that the allowed values for the wave numbers k are distributed on a
regular point lattice in the 3-D space depicted in Fig. 4.2(a). The number Nf of eigenfrequencies in the
frequency range from 0 to f equals the number of lattice points contained in the sphere octant of radius
k = c · 2πf depicted in Fig. 4.2(b). Therefore, Nf = Vf/V0, where Vf is the volume of the sphere
octant of radius k and V0 is the average volume per lattice point. The former is one octave of the sphere
volume, Vf = πk3/6, while the latter can be estimated as the volume of the cube depicted in Fig. 4.2(b),
whose edges have lengths π/Lx, π/Ly, π/Lz , respectively (recall Eq. (4.5) for the wavenumbers kn,m,l).
Therefore V0 = π3/V , where V = LxLyLz is the room volume. One finally obtains

Nf =
πk3/6

π3/V
=

4π

3
V

(
f

c

)3

. (4.8)

The modal density is estimated as the derivative of Nf with respect to frequency:

Df (f) =
dNf

df
=

4πV

c3
f2 (4.9)

In order to gain a quantitative understanding of these equations, let us consider a hypotetical medium-
small auditorium with dimensions (Lx, Ly, Lz) = (35, 20, 14) meters, which means V = 9800 m3.
From Eq. (4.8) we see that there are approximately 109 normal modes with frequencies between 0 and
10 kHz. From Eq. (4.9) we see that at 1 kHz the modal density per Hz is approximately 3500, which
means that the average spacing between modes is less than 3× 10−4 Hz.

4.2.1.3 Sound sources and room impulse responses

Let us now move from the mathematical analysis sketched in the previous sections towards a more
realistic situation. First, we assume that a sound source is located within the domain D. The distribution
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in space of the source is described by a continuous density function f̄(x), while the time-domain signal
emitted by the source is described by a function q̄(t): this means that q̄(t)·f̄(x)dV is the volume velocity
of a volume element dV at time t.

As a second hypothesis, we consider complex, non-ideal, boundary conditions in which walls are not
perfectly rigid and instead absorption occurs. This can be restated by assuming that the normal modes
have now complex eigenvalues kn,m,l:

kn,m,l = ωn,m,l/c+ jδn,m,l/c, δn,m,l ≪ ωn,m,l. (4.10)

We want to find the solution of the wave equation in D under these two hypotheses. The wave
equation in the presence of a sound source can be written as

∇2p(x, t) =
1

c2
∂2p

∂t2
(x, t)− ρairf̄(x)

dq̄

dt
(t). (4.11)

Since the fn,m,l functions of Eq. (4.4) are a basis for L2(D), we can project both the source density
function f̄ and the solution p of Eq. (4.11) on this basis:

f̄(x) =
∑
n,m,l

F̄n,m,lfn,m,l(x), P (x, s) =
∑
n,m,l

Pn,m,l(s)fn,m,l(x). (4.12)

Note that in the second of the above equations we have implicitly assumed to work in the Laplace domain
instead of the time domain. If we can find the unknown coefficients Pn,m,l(s) as functions of the known
coefficients F̄n,m,l, then we have the solution P (x, s) or equivalently p(x, t). If one inserts both series
into Eq. (4.11) the result is

Pn,m,l(s) = sρairc
2Q(s)

F̄n,m,l

s2 + c2k2n,m,l

. (4.13)

We can find a solution P (x, s) if we consider the special case of a point source located at a certain
point x0 of the room and emitting an impulsive sound signal. Under this assumption one has f̄(x) =
δD(x − x0), where the function δD(·) is the Dirac delta. This implies that the coefficients F̄n,m,l are in
this case F̄n,m,l = fn,m,l(x0). Moreover, if the sound source is emitting an impulse q̄(t) = δ(t), then
the corresponding spectrum is Q(s) = 1. If one substitutes the coefficients (4.13) into the second of
Eqs. (4.12), the result is

P (x, s) := Hx0,x(s) = sρairc
2
∑
n,m,l

fn,m,l(x)fn,m,l(x0)

s2 + c2k2n,m,l

. (4.14)

This is the acoustic pressure generated in x by a point source located at x0 and emitting an impulse. If
we take the inverse Laplace transform, hx0,x(t) = L−1{Hx0,x}(t), this is what we call a Room Impulse
Response (RIR), measured at point x after an impulse emitted in x0. Equation (4.14) is telling us that
the RIR is a superposition of numerous second-order resonant systems, each with center frequency very
close to ωn,m,l and damping constant very close to δn,m,l:

hx0,x(t) =

{
0 t < 0∑

n,m,lAn,m,l(x0,x)e
−δ′n,m,lt cos(ω′

n,m,lt+ ϕn,m,l) t ≥ 0
(4.15)

The function hx0,x(t) completely describes the room response for a source in x0 and a receiver in x: if
the emitted sound is not an impulse but a generic signal q̄(t), then the response will be –as usual– the
convolution of the signal with the impulse response: s(t) = [q̄ ∗ hx0,x](t).
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Figure 4.3: Room Impulse response and reverberation time: (a) RIR of a very reverberant environment
(a cathedral); (b) a portion of the same RIR in dB, together with its EDC and a linear fit.

Now in normal rooms damping constants typically lie between 1 and 20 Hz: this justifies the as-
sumption of very small δ coefficients in Eq. (4.10), and moreover tells that half-widths of these resonant
systems are of the order of 1 Hz. If we compare this finding to the modal density estimate given in
Eq. (4.9), we see that the average spacing of eigenfrequecies is smaller by several orders of magnitude
than half-widths. Therefore each single resonant peak always covers many others and it is practically
impossible to excite a single room resonance e.g. with a sinusoidal signal.

4.2.1.4 Reverberation time

From Eq. (4.15) we see that room reverberation adds a decaying tail to a source signal. One of the most
important parameters derived from this equation is the reverberation time Tr, which is defined as the
time required for the sound pressure to decay 60 dB. Clearly Tr is related to the absorption coefficients
δn,m,l. An approximate description of Tr can be derived as follows.

Given a source signal q̄(t) in x0, the resulting room response sx(t) at a point x will have the form

p(x, t) = [q̄ ∗ hx0,x](t) = . . . =
∑
n,m,l

cn,m,le
−δ′n,m,lt cos(ω′

n,m,lt+ ψn,m,l) =
∑
n,m,l

cn,m,lsn,m,l(t),

(4.16)
where the cn,m,l’s and the ψn,m,l’s will vary depending on the signal q̄, and where we have introduced
the notation sn,m,l(t) = e−δ′n,m,lt cos(ω′

n,m,lt + ψn,m,l) for brevity. The energy density of the response
(or actually a quantity proportional to the energy density) is obtained by squaring s(t):

w(t) = [s(t)]2 =
∑
n,m,l

∑
n′,m′,l′

sn,m,l(t)sn′,m′,l′(t). (4.17)

We can derive an estimate of how w(t) decays by averaging w(t) over time and exploiting the cir-
cumstance that the exponential terms vary slowly (as the δ’s are small). By averaging the cosine
products only, the products with (n,m, l) ̸= (n′,m′, l′) cancel on the average, and the products with
(n,m, l) = (n′,m′, l′) give a value 1/2. If one makes the further assumption of nearly uniform damp-
ing, i.e. δn,m,l ∼ δ0, then we obtain the following result:

⟨w(t)⟩ =
∑
n,m,l

c2n,m,le
−2δn,m,lt ∼ e−2δ0t

∑
n,m,l

c2n,m,l. (4.18)
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This equation tells that for uniform damping the energy of the reverberation tail decays exponentially. In
particular the reverberation time Tr is in this case derived as

− 60 = 10 log
(
e−2δ0Tr

)
, ⇒ Tr =

6.91

δ0
. (4.19)

In general one cannot assume uniform damping, and as a consequence Tr is a function of frequency.
However, the reverberation level falls in many practical cases in a fairly exponential fashion and therefore
an overall reverberation time Tr can be defined and measured. Figure 4.3(a) shows a RIR measured in
a very reverberant environment, a chatedral. Note that, apart from the initial spikes, the overall decay is
fairly exponential.

The accuracy with which Tr can be be determined directly from RIR signals is in general severely
limited by random fluctuations in the decay curves, which result from mutual beating of normal modes
of different frequencies at the moment the excitation signal ceases. Instead Tr is more reliably estimated
by looking at another function, the Energy Decay Curve (EDC, also called the Schroeder integral for
historical reasons), defined as follows:

EDC(t) =

∫ ∞

t
h2(τ)dτ, (4.20)

where h(t), is a RIR. The valueEDC(t) provides a measure of the reverberation energy that is left in the
RIR at time t. The advantage is that this function has a much more regular behavior than h(t), therefore
Tr can be determined by fitting the decay of EDC(t) through linear regression (on a dB scale), and
looking at the time needed for this linear fit to drop by 60 dB. Figure 4.3(b) shows this procedure applied
to the RIR of Fig. 4.3(a). From the linearly fitted EDC one can see that Tr is in this case close to 4 s,
which is a quite large value as one would expect in a cathedral.

M-4.1
Write a function that computes the reverberation time Tr given a signal representing a RIR.

M-4.1 Solution

function [Tr,edc] = revtime(rir,Fs,ti,tf);
%Returns an estimate of Tr and of the edc; rir is a row vector representing
%a RIR, ti and tf are the initial and final times on which edc is computed

rir=rir(round(ti*Fs):round(tf*Fs)); % chunk the RIR on the interval [ti,tf]
edc = 10*log10(fliplr(cumsum(fliplr(rir.ˆ2)))); % compute EDC
edc = edc-max(edc); %normalize at 0 dB

%linearly fit edc in the first half and find Tr as
%the instant where the linear fit drops below -60dB
c = polyfit(1:round(length(edc)/2),edc(1:round(length(edc)/2)),1);
Tr = (-60-c(2))/(c(1)*Fs); % edc=c2 +c1*Fs*t; edc=-60 => this formula

The choice of the initial and final instants is critical: they have to cover the range after the initial impulse
and where the decay is almost linear. Moreover we have decided to estimate Tr on the first half of the
EDC curve only, in order to avoid the error of the last EDC samples. Of course many techniques exist
to choose these parameters automatically, this is just a toy example.
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Figure 4.4: Acoustic rays from a source to a receiver (a) in a vertical room section and (b) in a horizontal
room section. Solid lines represent the direct sound, dashed lines represent first-order reflections, dotted
lines represent second-order reflections.

4.2.1.5 Geometrical room acoustics

Few results of practical use are obtained from direct manipulation of the D’Alembert equation, as we
did in the previous sections. This is especially true when we consider rooms of arbitrary shapes instead
of parallelepipeds: in that case even the computation of a single normal mode can become extremely
difficult. An alternative description can be employed if we consider extremely high acoustic frequencies.
In this limit, the concept of sound waves can be replaced by the concept of acoustic rays. By sound
ray, we mean a vanishingly small portion of a spherical wave emitted by a point source in a room. This
ray has well-defined direction and velocity of propagation, and conveys a total energy which remains
constant (provided that it propagates within an ideal medium with no losses).

This simplified description based on acoustic rays takes the name of geometrical acoustics and has
strict similarities with geometrical optics, although typical wavelengths and propagation velocities are
very different in the two cases. Note that the assumption of extremely high frequencies is practically
met in many cases of interest in room acoustics: a frequency of 1 kHz corresponds to a wavelength of
approximately 34 cm, which is one or two orders of magnitude smaller than typical linear dimensions of
rooms, as well as typical distances traveled by sound waves in a room.

Similarly to an optic ray, an acoustic ray that strikes a plane surface is reflected according to the fol-
lowing principles: (a) the reflected ray remains in the plane identified by the incident ray and the normal
to the surface, and (b) the angles of the incident and reflected rays with the normal are equal. Figure 4.4
shows a room with a non-trivial shape (something like an auditorium), in which we have positioned a
sound source and a receiver. All the paths from the source to the receiver can be characterized according
to the number of reflections involved. The single source-receiver path with 0 reflections is the direct
sound, and is followed by a small number of first-order reflections that involve one reflection on the
room boundary, a larger number of second-order reflections that involve two reflections, and so on. In
Fig. 4.4 we have drawn two examples of first- and second-order reflections.

Geometrical room acoustics can be used to provide a qualitative description of a RIR. Assume that
an ideal impulse shot from a point source reaches a receiver at time t = 0. Each reflected ray will then
arrive with a certain time delay and also with a certain attenuation, which depends on the path length
(absorption in the medium) and on the number of reflections (wall asbsorption). The first reflections are
strong and sporadic, but the temporal density of reflections increases rapidly while the average reflection
energy decays accordingly. A qualitative reflection diagram is given in Fig. 4.5. Except for the first few
isolated reflections, the weaker and denser reflections arriving at later times merge into a unitary percept.
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500 100 150 time (ms)

Figure 4.5: Schematical room response to an ideal impulse: the time axis is relative to the direct sound,
which reaches the receiver at t = 0.

This description of room reverberation as a temporal sum of reflected rays is complementary to the view
of reverberation as the sum of free decaying normal modes.

We now want to derive an estimate of the temporal structure of reflections. To this end we employ
the usual prototype room, i.e. the parallelepiped, and we introduce the concept of image sources. If
the reflecting surface is a plane the reflection of a sound ray can be simulated by constructing an image
source. This process is illustrated in Fig. 4.6(a): given a sound source A and a receiver B, the path of
a reflected ray r from the wall to B is the same path of the direct ray r′ emitted by the image source
A′. The process can be iterated in order to take into account higher-order reflections, and results in the
construction of a grid of image sources that replace the walls altogether.

Now suppose that at time t = 0 all the sources emit an impulse. During the time interval from t to
t + dt, the impulses that reach a receiver in the center of the room are those emitted by image sources
whose distance from the receiver lies between cdt and c(t + dt). These sources are located within the
spherical shell with radius ct, thickness cdt, and volume 4πc3t2dt illustrated in Fig. 4.6(b). Therefore
the volume V of an image room is contained 4πc3t2dt/V times in the spherical shell, and for t large
enough (i.e. for high reflection densities) this number coincides with the number dNr of image sources
contained in the shell. The temporal density of reflections arriving at time t is then

Dr(t) =
dNr

dt
(t) = 4π

c3t2

V
. (4.21)

One could show that this result applies not only to a parallelepiped but to rooms of arbitrary shapes.

4.2.2 Perceptual reverberation parameters

In the previous section we have analyzed reverberation from a purely physical point of view. However
in many applications it is important to correlate physical measurements to subjective judgements of
acoustical quality, obtained from psychophysical experimentation. This is especially true in the domain
of concert hall acoustics, where researchers have tried to isolate the objective parameters that are most
relevant in determining the perception of acoustical quality of a hall. Subjective attributes are typically
derived from perceptual experiments with musicians and listeners, who answer to detailed interviews,
and subsequent comparison of the results with measured objective parameters.

In this section we enter, for the time in this book, the domain of psychoacoustics, and review some
of the subjective attributes most commonly used in establishing the acoustical quality of reverberant
environments. The literature on this topic is vast and the terminology is not always fully consistent,
therefore we try to cluster together similar or equivalent concepts whenever possible.
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Figure 4.6: Estimation of temporal reflection density through the image source method; (a) construc-
tion of two first-order and two second-order reflections, and (b) estimation of acoustic rays reaching a
receiver within the time interval (t, t+ dt).

Clearly the perceptual attributes of reverberation are of great importance also for the design of rever-
beration algorithms. The ultimate goal is to determine an orthogonal set of subjective attributes, using
e.g. multidimensional scaling techniques, and provide reverberation algorithms with a set of knobs each
of which controls a different perceptual attribute. A fundamental problem with this kind of approach is
that the number of perceptual dimensions is not known a priori, and moreover it is hard to assign assign
relevance to dimensions that are added.

4.2.2.1 Reverberance

We have defined the reverberation time Tr in Sec. 4.2.1 as the time required for the sound pressure to
decay 60 dB.2 This is one of the most important parameters for the perception of the reverberance, i.e.
the property of the environment of adding fullness and loudness to a dry sound, and of giving the listener
a sense of being enveloped by the sound. Some use the term “liveness” to refer to a similar concept, and
by contrast call “dead” an environment that is not reverberant.

We have already mentioned that Tr is in general a function of frequency, because absorption in
materials is typically higher at higher frequencies. A confirmation of this is given in Figure 4.7, which
shows a waterfall representation of a RIR: one can see that each frequency bin decays with a different
rate. This dependence of Tr on frequency is also important perceptually. In general the mid-frequency
Tr can be considered to be the best measure of the overall reverberant characteristics of a room.

Clearly the audibility of reverberation depends greatly on the sound source. For music or speech, the
early portion of the reverberant decay contributes more to the perception of reverberance than does late
reverberation, because it is audible during pauses and gaps between notes, syllables, and words. For this
reason an early decay time (EDT) parameter is also used as a complementary measure of reverberance.
The EDT is defined as the time required for the sound pressure to decay from 0 to −10 dB, multiplied
by a factor of 6 (which merely serves to facilitate comparison with Tr).

2An alternative and not completely equivalent definition commonly used in the domain of concert hall acoustics is the
following: Tr is the time required for the sound pressure to decay from −5 to −35 dB, multiplied by a factor of 2.
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Figure 4.7: Waterfall representation for the RIR of Fig. 4.3.

One might wonder what is the “optimal” Tr for a reverberant environment. The answer depends
first of all on the source signal: in the case of speech a relatively short Tr is generally preferred, since
when listening to speech we generally want to understand what the speaker is saying and thus we need
to perceive each element of the sound signal. For music on the contrary, a longer Tr can make a the
listening experience more pleasant by masking small imperfections and blending musical sounds. Given
this remark, it is not surprising that Tr’s in (good) concert halls are usually in the range 1.8 to 2.2 s, while
in opera houses values are usually in the range 0.9 to 1.5 s because the listener has to be able to enjoy
the music as well as to understand the text. Note however that Tr’s of renowned opera theaters are more
scattered than those of equally renowned concert halls.

4.2.2.2 Early reflections and spatial impression

The subjective attribute of spatial impression refers to the sense of a listener of being in close communi-
cation with the sound source and sorrounded by the sound. Other terms often found in the literature and
referred to similar concepts are spaciousness, envelopment, ambience, apparent source width. Subjec-
tive judgements about this property appear to be strongly correlated to the structure of the early reflections
of the environment, with two elements being of specific importance.

A first commonly accepted result is that the degree of spatial impression depends on the initial time-
delay gap tI , the difference in arrival times between the direct sound and the first reflection. A lack
of early reflections (i.e. a long tI ) has the effect of making the sound source perceived as remote and
disconnected from the listener, while a short tI provides the desired sense of envelopment. Some studies
suggest that a parameter tI defined as above becomes useless if the first reflection is much weaker than
the following ones.

A second physical correlate of spatial impression is the fraction of lateral energy to the total energy
within the early reverberation: a significant amount of lateral early reflections, i.e. reflections com-
ing from the sidewalls, provides the listener with the impression of being enveloped by the sound. A
quantitative estimate of this property is the so-called lateral energy fraction LF , defined as

LFt =

∫ t
0 h

2
lat(τ)dτ∫ t

0 h
2(τ)dτ

, (4.22)
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where h(t) is the room impulse response measured with an omnidirectional microphone while hlat(t) is
the one measured with a dipole microphone (with null axis facing forward this captures lateral energy in
the ±20◦ ± 90◦ range). A typical integration time is t = 80 ms.

The LFt measure has been superceded by another parameter, the early interaural cross-correlation
coefficient IACCE . Let us first define the interaural cross-correlation function IACF (t) as

IACF (t) =

∫ t2
t1
h(l)(τ)h(r)(τ + t)dτ√∫ t2

t1

[
h(l)(τ)

]2
dτ ·

∫ t2
t1

[
h(r)(τ)

]2
dτ
, (4.23)

where h(l),(r)(t) are the so-called Head-Related Impulse Responses at the entrance of the left and right ear
canals, respectively (measured e.g. with a “dummy-head” such as those described later on in Sec. 4.6.1),
with the listener facing the sound source. Therefore IACF (t) is a binaural attribute of reverberation,
while all the parameters previously examined in this section are monoural attributes.

The interaural cross-correlation coefficient IACC is the maximum of IACF (t) in a range ±1 ms:

IACC = max
t∈(−1,1)·10−3

| IACF (t) | . (4.24)

In particular, if the integration times t1 = 0, t2 = 80 ms are used then the above equations provide the
early interaural cross-correlation coefficient IACCE . This is a measure of the similarity of the sound
signals arriving at the two ears during the first 80 ms. If the sounds are equal then IACCE = 1, while
if they are two independent random signals then IACCE = 0. The IACCE is a measure of spatial
impression because is scales with the fraction of lateral early reflections arriving at the ears: as the
number of reflections from outside the median plane increases, the IACF (t) function broadens and
consequently IACCE takes smaller values.

In concert halls initial time-delay gap tI and the amount of lateral energy are correlated parameters.
Measures of tI in real concert halls show a high correlation of this parameter with the hall width: in a
narrow hall it can be shorter than 30 ms, while in a wide hall it can be longer than 50 ms. On the other
hand, the hall width is clearly correlated with the fraction of lateral energy arriving at the listener, which
will increase as the hall narrows. It is a common finding in the literature of concert hall acoustics that
subjective rankings of the acoustic quality of halls scale with their width.

As a final remark, it has to be noted that the perception of spatial impression is largely independent
of the reverberation time: halls with similar Tr values but different tI and IACCE values sound very
different from each other. This finding support the commonly accepted assumption that early reflections
and late reverberation play rather separate roles in the perception of reverberation.

4.2.2.3 Clarity

The subjective attribute of clarity refers to the “transparency” of a reverberant environment. If the source
signal is music, then clarity is associated to the ability of a listener to perceive musical details, while if
the source signal is speech then clarity correlates to speech intelligibility. An alternative term which is
sometimes found in the literature is that of distinctness.

Single reflections of a reverberant environment are not perceived as individual events, except for ex-
ceptional (and generally undesirable) cases. Roughly speaking, early reflections have the effect of mak-
ing the sound source appear more extended and to increase the apparent loudness of the direct sound. On
the contrary, reflections arriving with longer delays are considered to be detrimental for the transmission
of information, since they cause different portions of the direct sound signal to merge.
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A quantitative measure of clarity is the clarity index, or ealy-to-reverberant energy ratio Ct:

Ct = 10 log10

( ∫ t
0 h

2(τ)dτ∫∞
t h2(τ)dτ

)
, (4.25)

measured in dB. The integration time t is ideally the time instant where late reverberation starts, and is
typically selected to be t = 80 ms. Thus Ct is a measure of early to late energy ratio.

It is sometimes recommended that Ct|t=0.008 for concert halls takes values in the range of −2 to
+1 dB. Note however that this parameter is not an independent measurable quality, since it correlates
to the initial time-delay gap tI and also on the early decay time EDT . Therefore, subjectively “good”
values of the clarity index will also depend on tI andEDT values. In other words, the subjective attribute
of clarity is not orthogonal to reverberance and spaciousness.

Note also that Ct is strongly dependent on the distance between source and listener: the direct sound
falls off 6 dBs for each distance doubling, whereas the reverberant level remains approximately con-
stant throughout the room. For this reason, the ratio of direct to reverberated energy is one of the most
important cues for the perception of distance, as we will see in Sec. 4.5.

A second objective parameter that relates to the subjective attribute of clarity is the center time ts,
defined as the center of gravity time of the sound field:

ts =

∫∞
0 τ · h2(τ)dτ∫∞
0 h2(τ)dτ

. (4.26)

Obviously a single reflection with a given strength will contribute the more to ts the longer it is delayed
with respect to the direct sound. Therefore high clarity is associated to low values of ts. It has to be
noted however that many studies report a high correlation of ts with Ct, in the range 50 < t < 80 ms.
Therefore this parameter does not add new information with respect to the clarity index.

4.2.2.4 Other perceptually relevant parameters

In Sec. 4.2.1 we have discussed room acoustics in terms of rays and normal modes, and we have not
considered other real-world phenomena. One of the most relevant of these is sound diffusion of sound
waves: very roughly, diffusion is due to irregularities (at various scales) of reflecting surfaces, that cause
scattering of reflected acoustic energy in many directions. This physical concept has a direct perceptual
counterpart. If one listen to music in a rectangular hall with perfectly flat sidewalls, the sound takes
on an undesirable harsh character. In order to produce the effect of a mellower sound and to increase
spaciousness during late reverberation, diffusion should be physically realized at fine and large scales.
A commonly accepted measure of diffusion is the late interaural cross-correlation coefficient IACCL.
This is defined from Eqs. (4.23, 4.24) using integration times t1 = 80 ms and t2 = 3 s, i.e. by estimating
the IACF function in the late reverberation portion. Similarly to the IACCE parameter, IACCL is a
binaural attribute of reverberation. It provides a measure of the correlation of the signals at the two ears
during late reverberation.

Loudness (or strength) is often mentioned as a relevant subjective attribute. Of course the overall
loudness depends on the power output of the sound source and not only on the reverberation of the
environment. Nonetheless it is useful to introduce a measure of loudness of the environment, which is
normalized with respect to the the source power. Such a measure can be used e.g. as a complementary
parameter to the clarity index (see Eq. (4.25) above), since high clarity is of no use if the sound cannot
be heard at proper loudness. A normalized measure of environmental loudness is given by the following
quantity, often called strength index G:

G = 10 log10

(∫∞
0 h2(τ)dτ∫∞
0 h20(τ)dτ

)
, (4.27)
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where h(t) is as usual the room impulse response and h0(t) is the response to the same non-directional
impulse measured in an anechoic environment at a distance of 10 m. Note however that subjective
loudness increases with reverberation time and is affected by the structure of early reflections. Therefore
G is not an independent correlate of loudness.

Finally, the most elusive subjective attributes are those related to timbral qualities of a reverber-
ant environment. Roughly speaking, many of the attributes in this family are related to the frequency-
dependent shape of the reverberation time. One such attribute is warmth, or sometimes timbre, which
characterizes the musicians’ judgement of “richness in bass”. This attribute correlates with the variation
of the reverberation time in the low- and mid-frequency range: as an example, a quantitative measure of
warmth can be the ratio of the average Tr in the range 250− 500 Hz to that in the range 500− 1000 Hz,
or arternatively the slope of a linear interpolation of the EDT function in the range 125 − 2000 Hz.
Other timbre-related attributes are heaviness and liveness, which roughly relate to low-frequency and
high-frequency variations of the reverberation time, respectively.

4.2.2.5 The Energy Decay Relief

A compact representation of the perceptually relevant features of a room impulse response is the so-
called Energy Decay Relief (EDR) function, which is a time-frequency representation of the reverberation
energy. The EDR function is in a way a generalization of the Energy Decay Curve (EDC) discussed
previously, and is constructed as follows: given a RIR h(t), this is bandpass filtered into a number N of
frequency bands, and the EDC of each of the bandpassed responses hi(t) (i = 1 . . . N ) is computed. The
resulting function EDR(t, ω) can be displayed as a surface in the 3-D space. The section EDR(0, ω)
provides the power gain as a function of frequency. A sectionEDR(t, ω0) shows the energy decay curve
for a given frequency bin around ω0.

M-4.2
Write a function that computes the EDR given a RIR.

M-4.2 Solution

function [EDR,F,T] = compute_edr(rir,Fs,frameSizeMS,overlap);
% adapted from http://ccrma.stanford.edu/%7Ejos/vguitar/

% define STFT parameters
minFrameLen = Fs*frameSizeMS/1000; %frameSizeMS is the framelength in ms
frameLen = 2ˆnextpow2(minFrameLen); % frame length = fft size
frameWindow = hann(frameLen);

%compute spectrogram and energy
[B,F,T] = specgram(rir,frameLen,Fs,frameWindow,round(overlap*frameLen));
[nBins,nFrames] = size(B);
B_energy = B.*conj(B);

%compute EDR (in dB)
EDR = zeros(nBins,nFrames);
for i=1:nBins %compute EDC for each frequency band

EDR(i,:) = 10*log10(abs(fliplr(cumsum(fliplr(B_energy(i,:))))));
end
EDR = EDR - max(max(EDR)); %normalize at 0 dB

The time-frequency EDR function can be parametrized through two functions of frequency only.
The first one is Tr(ω), the frequency-dependent reverberation time. The second one is the frequency
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Figure 4.8: Energy Decay Relief for the RIR of Fig. 4.3, normalized at 0 dB and truncated at −60 dB.

response envelope, G(ω). This latter function is constructed by backward interpolating up to t = 0
the exponential decay time. For an ideally diffuse reverberation that decays exponentially, one has the
equalityG(ω) = EDR(0, ω) andG coincides with the power gain of the room. In non-ideal cases,G(ω)
only represent a “conceptual” EDR(0, ω) of the late reverberation, and the parametrization through
Tr(ω) and G(ω) is only valid for the late portion of EDR(t, ω).

The EDR is sometimes regarded as a perceptual “signature” of a RIR, meaning with this that a large
number of measures of independent perceptual factors can be categorized as energy ratios or energy
decay slopes computed in different time-frequency regions of the EDR. Figure 4.8 shows an example of
EDR. Note that, in accordance to our predictions, Tr is shorter at higher frequencies.

4.3 Algorithms for synthetic reverberation: the perceptual approach

If a RIR signal is available, the most straightforward approach to synthetic reverberation is to convolve
an anechoic input signal with such a RIR. We do not review techniques for impulse response measure-
ment in this chapter, nor we address numerical techinques for convolution. We only observe that direct
convolution, obtained by storing each sample of the impulse response as a coefficient of an FIR filter
whose input is the dry signal, becomes easily impractical if the length of the response exceeds few tenths
of a second, as it translates into a FIR filter of order N ∼ 104. But even if we have enough computa-
tional resources for direct convolution, or use fast convolution techniques, a real recorder RIR has the
disadvantage that it is not easily modified to simulate changes in room attributes.

In order to overcome these limitations, in the second half of the 20th century several engineers and
acousticians developed electronic devices, models, and algorithms for synthetic reverberation that are
based on a perceptual approach, in which efficient filter representations are used, and only the perceptu-
ally salient features of reverberation are simulated and controllable.

4.3.1 Late reverberation

We have previously seen that a RIR can be seen as made of two components, early reflections and late
reverberation. In this section we discuss perceptual models for late reverberation, and we postpone early
reflection modeling to Sec. 4.3.2.
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Figure 4.9: Block scheme of a reverberator based on comb filters (the Hi blocks) and all-pass comb
filters (the Ai blocks). The internal structure of the Ai filters is shown in the grey box.

4.3.1.1 Recirculating delays

The two main computational structures that can be used for the inexpensive simulation of complex pat-
terns of echoes associated to late reverberation are the recursive comb filter H(z) (see Karplus-Strong in
Ch. Sound modeling: source based approaches) and the so-called all-pass comb filter A(z):

H(z) =
z−m

1− gz−m
, A(z) =

z−m − g

1− gz−m
. (4.28)

It is easily seen that A(z) is an all-pass structure, since each of the m poles is the reciprocal of one of
the m zeros and the amplitude response |A(z) | is therefore flat. For m = 1 the structure reduces to the
first-order all-pass filter examined in Ch. Sound modeling: source based approaches. The (positive) gain g in A(z)
has to be less than unity in order to ensure stability.

Figure 4.9 depicts a reverberator constructed using comb-filters and all-pass comb filters, together
with a realization of the all-pass comb (see the grey box). The general idea behind this structure is the
following. First, the parallel combination of comb filters generates a frequency response that contains
peaks contributed by each comb. In theory we can obtain an arbitrary modal density by using a suffi-
ciently large number N of comb filters. Second, the series combination of all-pass combs that receives
the output of the parallel combination of combs has the effect of dramatically increasing the temporal
density of reflections, because each echo generated by Ai(z) will create a set of echoes in Ai+1(z).
Again, an arbitrarily high reflection density can be in principle obtained by using a sufficiently large
number M of all-pass combs.

4.3.1.2 Parameter tuning

The choice of a proper set of parameter values is critical in order to obtain convincing results. In the
remainder of this section we provide a list of commonly accepted guidelines. The sample delays mi of
the combs should be mutually coprime (or incommensurate), in order to reduce the superimposition of
echoes in the impulse response, thus maximizing the modal density and reducing the so-called flutter
echoes.

The gains gi of the combs can be chosen as functions of the sample delays mi, given a desired
reverberation time Tr, as follows: we want to find the number R of loops in the ith comb after which
the dB amplitude of an unitary impulse has become −60 dB; the amplitude after R loops is gR =.
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Moreover R loops are completed in the time Tr = Rmi/Fs; therefore the following equation holds for
the reverberation time of a single comb:

Fs · 20 log10(gi)
mi

= −60

Tr
⇒ gi = 10−3

mi
FsTr . (4.29)

Note that this choice ensures that the pole moduli mi
√
gi = 10−3 1

FsTr have the same value for all the
combs. If this condition was not verified, then the poles with largest moduli would resonate longer and
would add an undesired tonal coloration in the late decay.

A quantitative estimate of the modal density provided by the parallel comb structure can be easily
obtained. If the mi’s of the combs are mutually coprime, then the modal density Df (which is number
of frequency peaks per Hz) can be estimated as

Df =

N∑
i=1

mi

Fs
=
Nm̄

Fs
, (4.30)

where m̄ is the mean sample delay length. Note that this modal density is constant for all frequencies,
unlike in real rooms (see Eq. (4.9)). A too low Df can introduce audible beating between two neigh-
boring modes, especially in response to narrowband signals. In order to avoid this effect, a good rule of
thumb is to choose the mi’s such that Df ≥ Tr: this ensures that the average beat period is at least equal
to the reverberation time.

In a similar way we can estimate quantitatively the temporal reflection density provided by the par-
allel combination of combs: each filter outputs one echo every mi/Fs seconds, therefore the combined
reflection density (number of reflections per second) is

Dr =

N∑
i=1

Fs

mi
≈ NFs

m̄
, (4.31)

where the last approximation only holds when themi are similar. Again, the reflection density is constant
as a function of time, unlike real rooms (see Eq. (4.21)). A valueDr = 103 is sometimes considered to be
sufficient to sound indistinguishable from diffuse reverberation, although higher values (e.g. Dr = 104)
are preferable.

From the two estimates (4.30) and (4.31) provide an estimate of the number of comb filters needed
in order to achieve desired modal and reflection densities:

N =
√
DfDr. (4.32)

Note however that this estimate does not consider the effect of the cascaded series of all-pass comb
filters Ai: as already mentioned, the Ai provide a dramatic increase of the reflection density and allow to
a number N of comb filters that is smaller than the one estimated from Eq. (4.32).

M-4.3
Realize the reverberant structure of Fig. 4.9. The reverberator can be tried with N = 4, M = 2, and the following
settings: time delays mi/Fs (i = 1 . . . 4) of the comb filters between 30 and 45 ms, time delays mi/Fs (i = 5, 6)
of the all-pass combs between 1.7 and 5 ms, modal density Df = 1000, gains of the all-pass combs gi = 0.7

(i = 5, 6). With these settings the structure is known as Schroeder reverberator (see bibliography).

M-4.3 Solution
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function y = reverb_schroeder(x, Tr, m_H, m_A, g_A);
% x: input signal; m_H: N-dim array of delays (in samples) of combs H_i;
% m_A: M-dim array of delays (in samples) of all-passes A_i;
% g_A: M-dim array of all-pass gains

global Fs;
y = zeros(length(x),1); %output signal updated after each single filter
for i=1:length(m_H) %parallel comb filtering

g_H = 10ˆ(-3*m_H(i)/(Fs*Tr)); % gain of ith comb
num_H = [zeros(1,m_H(i)),1]; % numerator of ith comb
den_H = [1,zeros(1,m_H(i)-1),-g_H]; % denominator of ith comb
y = y + filter(num_H, den_H, x); % update comb parallel

end
for i=1:length(m_A) %series all-pass filtering

num_A = [-g_A(i),zeros(1,m_A(i)-1),1]; % numerator of ith all-pass
den_A = [1,zeros(1,m_A(i)-1),-g_A(i)]; % denominator of ith all-pass
y = filter(num_A,den_A,y); % update all-pass series

end

4.3.1.3 Low-pass combs

The reverberators discussed above sound reasonably well especially for short reverberation times and
low reverberation levels. For different settings however they suffer from a number of problems. First, the
reverberation is not dense enough at the beginning, resulting in a “grainy” sound quality (especially with
impulsive sounds). Second, late reverberation tends to exhibit an already mentioned “fluttering” effect.
Third, especially for long Tr’s a “ringing” effect can be heard, which gives an undesired metallic quality
to the reverberation. Fourth, the modal density is not sufficiently large and, as already mentioned, does
not increase with frequency. Fifth, the reverberation time Tr does not depend on frequency, unlike in real
rooms (see Sec. 4.2.2 and the EDR function there discussed).

A first obvious way of improving the modal density is to increase the number of comb filters in
parallel, especially when long reverberation times need to be simulated. A second more substantial
improvement amounts to employ, in place of comb filters, a low-pass comb filter, where a low-pass
filter Hlp is inserted in the feedback loop of the comb together with the scalar gain g. The purpose of
this modification is to simulate the attenuation effects of higher frequencies, due to air viscosity, heat
conduction, and energy losses at reflection. As a result, Tr now decreases at higher frequencies and
makes the reverberation sound more realistic. In addition, the response to impulsive sounds is also
improved, due to the smoothing effect of the low-pass filtering.

If a simple one-pole low-pass filter Hlp is used, then the low-pass comb filter is given as

H(z) =
z−m

1−Hlp(z)z−m
, with Hlp(z) =

g2
1− g1z−1

. (4.33)

One could verify that in order for H(z) to be stable the condition maxz |Hlp(z) | = g2/(1 − g1) < 1
must hold. A practical choice is g2 = g(1− g1), with g < 1. In this way the overall Tr is still controlled
by the parameter g as in Eq (4.29)

Note that we have already introduced the low-pass comb filter for the Karplus-Strong algorithm in
Ch. Sound modeling: source based approaches, although here we are using a different low-pass filter Hlp.

Coefficients of the low-pass combs: g2 can be determined as a function of the delay length and the
desired Tr, as explained in the previous section. The g1 coefficient can also be related with decay time
at a specific frequency or fine tuned by direct experimentation.
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Figure 4.10: A reverberator constructed with a series connection of all-pass filters and a low-pass filter
in feedback.

M-4.4
Realize the reverberant structure of Fig. 4.9 using low-pass combs of the form (4.33). The reverberator can be
tried with N = 6, M = 1, and with the following settings: time delays mi/Fs (i = 1 . . . 6) of the combs distributed
between 50 and 78 ms, coefficients g1,i of the low-pass filter distributed between 0.40 and 0.48 (at Fs = 44.1 kHz),
time delay of the all-pass comb m7/Fs = 6 ms, gain of the all-pass comb g7 = 0.7. With these settings the
structure is known as Moorer reverberator (see bibliography)

M-4.4 Solution

function y = reverb_moorer(x,Tr,m_H,g1_H,m_A,g_A)
% x: input signal; m_H: N-dim array of delays (in samples) of combs H_i;
% g1_H: N-dim array of coefficients of the H_lp’s; m_A : M-dim array of
% delays (in samples) of all-passes A_i; g_A: M-dim array of all-pass gains

global Fs;
y = zeros(length(x),1); %output signal updated after each single filter
for i=1:length(m_H) %parallel comb filtering

g_H = 10ˆ(-3*m_H(i)/(Fs*Tr)); % gain of ith comb
num_H = [zeros(1,m_H(i)),1,g1_H(i)]; % numerator of ith lowp. comb
den_H = [1,-g1_H(i),zeros(1,m_H(i)-2),-g_H*(1-g1_H(i))]; % denominator
y = y + filter(num_H, den_H, x); % update comb parallel

end
for i=1:length(m_A) %series all-pass filtering

num_A = [-g_A(i),zeros(1,m_A(i)-1),1]; % numerator of ith all-pass
den_A = [1,zeros(1,m_A(i)-1),-g_A(i)]; % denominator of ith all-pass
y = filter(num_A,den_A,y); % update all-pass series

end

Clearly the filter coefficients num H and den H have been determined by combining Eqs. (4.33).

4.3.1.4 Nested all-pass filters

Despite the improvements provided by this latter reverberator, some problems remain. First, it is not
possible to tune the reverberator to a desired Tr(ω) function. Second, the modal density is still constant
with respect to frequency and the ringing quality and the fluttering effect in the reverberation tail remain,
although reduced to some extent. In order to overcome this problems some researchers have proposed
reverberators with entirely different structures than the one shown in Fig. 4.9. One such structure is
shown in Fig. 4.10.

As before, the cascaded all-pass filters Ai(z) provide a high temporal density of reflections, because
each echo generated by a filter will create a set of echoes in the following one. In this case however, the
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Figure 4.11: Nested all-pass filters; (a) generalization of an all-pass structure (see Fig. 4.9), and (b)
realizazion by means of a lattice structure.

output from the last one is recirculated to the series connection through a low-pass filter H(z) and an
attenuating gain g. The resulting system is stable, if the condition |gH(ejω)| < 1 ∀ω is verified.

The low-pass filterH(z) can be interpreted as simulating frequency-dependent absorptive losses, and
the gain g provides control over the reverberation time. An important effect of this outer feedback loop
is that the characteristic metallic sound of the series all-pass is drastically reduced. Another peculiarity
of this structure is that the output is constructed as a linear combination of the all-pass outputs. Since
each each tap outputs a different response shape, the coefficients ai can be adjusted in order to shape the
amplitude envelope of the reverberant decay.

A final remark concerns the possibility of generating a reflection density that increases with time, as
in real rooms. A structure that achieves this goal is a nested all-pass filter A1(z), which can be defined
recursively as follows:

AM+1(z) = 1,

Ai(z) =
z−miAi+1(z)− g

1− gz−miAi+1(z)
, for i = 1 . . .M.

(4.34)

Figure 4.11(a) shows that this structure can be seen as a generalization of the all-pass comb, in which
part of the delay line has been substituted by an all-pass filter. Figure 4.11(b) explodes this structure
into a lattice realization. It is easy to verify that each of the nested filters Ai(z) are all-pass. Moreover,
Fig. 4.11(a) shows that each echo generated by the inner all-pass Ai+1(z) is recirculated to itself through
the outer feedback path of Ai(z): this intuitively explains why this structure provides a reflection density
that increases with time.

M-4.5
Realize the reverberant structure of Fig. 4.10 using nested all-pass filters of the form (4.34).

4.3.2 Early reflections

So far we have only examined perceptually-based algorithms for the simulation of late reverberation. In
this section we address the simulation of early reflections, which have great importance in the perception
of the acoustic space as we have see in Sec. 4.2.2.

4.3.2.1 FIR structures

As previously discussed, the early response of a room is sparsely populated with attenuated impulses.
These can be straightforwardly simulated using a direct-form FIR filter that reproduces these impulses
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explicitly and accurately. For the determination of the filter parameters, a good rule of thumb is to
apply to the early reflections delays the same criterion of “mutually-primeness” used before for the comb
delays. A better strategy is to derive the parameters from some geometric modeling technique, e.g. the
source image method discussed in Sec. 4.2.1.

M-4.6
Write a function that computes a signal containing the first R early reflections

M-4.6 Solution

function y = reverb_earlyrefl(x, m_E, a_E);
% x: input signal; m_E: R-dim array of delays (in samples) of early
% reflections; a_E: R-dim array of gains of early reflections

num = zeros(1,max(m_E)+1); %empty FIR numerator
num(m_E+1) = a_E; % populate numerator with early reflection gains
y = filter(num,1,x);

The delays in this script have a slightly different meaning than those in Fig. 4.12, since they are not
cascaded.

Figure 4.12 shows an example of early reflection modeling, in which the FIR filter simulates the
first R reflections and has been realized using a direct form structure. The early reflection filter has to
be connected to a late reverberation block: Fig. 4.12(a) and 4.12(b) show two possible connections. In
Fig. 4.12(a) the late reverberator receives the delayed input signal, and therefore the FIR response will
always occur before the late response in the final output. Figure 4.12(b) shows a more complex coupling
between the two blocks. In this case the late reverberator is driven by the output of the FIR filter, with
the result of increasing the reflection density in the late reverberation. Moreover, additional control
parameters are available: the gain g can be adjusted in order to balance the early/late reverberation ratio,
while the delays D1, D2 can be tuned so that the start of the late reverberator output coincides with the
last pulse output from the FIR filter, thus avoiding undesired gaps in the overall response.

M-4.7
Realize the reverberator depicted in Fig. 4.12(a), where the early reflection FIR filter has to be coupled to one of
the late reverberation structures discussed in the previous sections.

M-4.7 Solution

function y = reverb_schroeder_earlyrefl(x, Tr, m_E, a_E, m_H, m_A, g_A);

global Fs;
y_E = [reverb_earlyrefl(x,m_E,a_E); zeros(max(m_E),1)]; %early refl.
y_L = reverb_schroeder([zeros(max(m_E),1); x],Tr,m_H,m_A,g_A); %late rev.
y=y_E+y_L;

M-4.8
Realize the reverberator depicted in Fig. 4.12(b), where the early reflection FIR filter has to be coupled to one of
the late reverberation structures discussed in the previous sections. Compare the resulting impulse responses
with the ones obtained from M-4.7.

M-4.8 Solution
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Figure 4.12: Two realizations of a reverberator with early reflections; (a) late reverberation block re-
ceiving the delayed input signal, and (b) late reverberation block receiving the output of the early rever-
beration FIR filter, with additional control parameters D1, D2, g. The late reverberation block can be
one of the structures examined in the previous sections.

function y = reverb_moorer_earlyrefl(x,Tr,m_E,a_E,m_H,g1_H,m_A,g_A,g_mix);

global Fs;
y_E = reverb_earlyrefl(x,m_E,a_E); %early refl.
y_L = reverb_moorer(y_E,Tr,m_H,g1_H,m_A,g_A); %late rev.

delaydiff = max(m_E) - min(m_H); % diff. in delay between early
if (delaydiff>0) % refl. and late rev.

y = [y_E; zeros(delaydiff,1)] + g_mix*[zeros(delaydiff,1); y_L];
else

y = [zeros(delaydiff,1); y_E] + g_mix*[y_L; zeros(delaydiff,1)];
end

In order to improve the quality of the FIR structure described above, one has to include some form
of low-pass filtering that models frequency dependent losses. One possibility is to substitute each of
the gains ai with a low-pass filter, composed by considering the history of reflections for each echo.
Early reflections are not perceived as individual events however, therefore it is not necessary to model
accurately the spectral content of each single reflection. A cheaper, and often satisfactory, choice is to
sum sets of reflections together and and to filter them through the same low-pass.

4.3.2.2 Directional effects

In this brief section we anticipate some concepts that will be addressed in Secs. 4.5 and 4.6, where we
will address the topic of rendering the location in space of a sound source.

Effects due to reverberation and spatial perception of sound are related in many respects. On the one
hand, reverberation has a relevant role in the perception of the location of a sound source, as we will see
in Sec. 4.5. On the other hand, the subjective attribute of spatial impression is extremely important in
the perception of reverberation, and should be accounted for in any synthetic reverberation algorithm: in
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Figure 4.13: Two stuctures that associate directional filters to early reflections, for binaural reverbera-
tion; (a) one directional filter for each reflection, and (b) two directional filters for two sets of reflections.

Sec. 4.2.2 we have seen that early reflections in particular have a primary role in the formation of spatial
impression (see the definition of the early interaural cross-correlation coefficient).

An early reflection reaches the two ears with different intensities and at different times, because of
the shadowing effect of the head, the different distance traveled, the filtering properties of the pinna, and
so on. For this reason early reveberation is most effective if it is presented binaurally, i.e. by taking into
account these effects and presenting different early reflections to the two ears (e.g. via headphones). In
this case one can associate with each early reflection a directional filter intended to reproduce localization
cues. One structure that realizes this idea is shown in Fig. 4.13(a). H(l),(r) are the so-called Head-Related
Transfer Functions,3 that represent the transfer function between the sound source and the entrance of
the ear canals. These directional filters are associated to early reflections in a structure analogous to those
shown in Fig. 4.12.

Another possibility is to sum sets of early reflections together and process each set with the same
directional filter, so that all the reflections in a single set will be rendered with the same spatial location.
This approach can still produce a convincing sensation of spatial impression, while being far more ef-
ficient. Various realization of this general idea have been proposed. Figure 4.13(b) shows one possible
realization: two sets of echoes are formed and each set is processed with the same directional filters.
Various degrees of spatial impression can be obtained by playing with the gain ge, and convincing results
are obtained already with R = 6 reflections.

As a conclusion to this section it worth mentioning that if no binaural processing is performed the
addition of early reflections can in certain cases deteriorate the quality of a reverberator, as they cause
tonal coloration of the sound without producing spatial impression.

3The transforms of the Head-Related Impulse Responses already introduced in Eq. (4.23).
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4.4 Multidimensional reverberation structures

4.4.1 Feedback delay networks

4.4.1.1 A n-D generalization of the recursive comb filter

In the previous section we have seen that the recursive comb filter of Eq. (4.28) has been extensively
used as the main building block of perceptual reverberators, as an inexpensive way to generate patterns
of resonances. Now the question is: can we generalize the comb structure in order to achieve higher
modal densities? The filter structure depicted in Fig. 4.14 provides a first answer. First, it is easily
seen to be a vector generalization of the recursive comb filter, as it reduces to a parallel combination of
ordinary comb filters when the feedback matrix A = [aij ] is diagonal. Second, and more interesting, it
recirculates the output of the ith delay line to the input of the jth delay line, for every non-null element
aij . This observation gives the intuition that when A is non-diagonal this structure is capable of much
higher modal densities than a simple parallel of comb filters.

The generalization extend also to stability conditions. While the comb filter of Eq. (4.28) is stable if
| g | < 1, the multidimensional structure of Fig. 4.14 is stable if ∥A ∥2 < 1, where ∥ · ∥2 is the spectral
norm of a matrix.4 This can be easily verified by applying the conditions for Lyapunov stability, i.e. that
the output y[n] decreases in time when the input signal x is zero. Since

∥y[n] ∥2 =

∥∥∥∥∥∥∥A
 y1[n−M1]

...
yN [n−MN ]


∥∥∥∥∥∥∥
2

, (4.35)

stability is guaranteed whenever the feedback matrix satisfies

∥Ay ∥2 < ∥y ∥2 ∀ y. (4.36)

In other words, a sufficient condition for stability is that the feedback matrix decreases the L2 norm of
its input vector. Since in general ∥Ay ∥2 < ∥A ∥2 · ∥y ∥2, we conclude that stability is guaranteed for
∥A ∥2 < 1.

4The matrix norm corresponding to any vector norm ∥ · ∥ may be defined for any matrix A as ∥A ∥ = maxx̸=0
∥Ax∥
∥x ∥ .

The spectral norm ∥ · ∥2 is the matrix norm induced by the L2 vector norm.
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Figure 4.15: A Feedback Delay Network structure for artificial reverberation.

A class of matrices that satisfy the stability condition is

A = ΓQ, where Γ =


g1 0 · · · 0
0 g2 · · · 0
...

...
. . . 0

0 0 · · · gN

 , | gi | < 1, (4.37)

and where Q is an orthogonal matrix. Recall that (1) the spectral norm ∥A ∥2 is the square root of the
largest eigenvalue of AAT , and that (2) by definition Q is orthogonal if and only if QQT = III. Then
∥A ∥2 = ∥ΓQ ∥ = maxi | gi |.

The above analysis justifies the use of the structure of Fig. 4.14 as a multichannel reverberator in
which N input signals x[n] (or N replicas of a single input signal x[n]) produce N outputs y[n] that are
approximately mutually incoherent and thus can be used in a N -channel loudspeaker system to render a
diffuse soundfield. A possible choice for the matrix A is

A = g
1√
2


0 1 1 0

−1 0 0 −1
1 0 0 −1
0 1 −1 0

 , | g | < 1, (4.38)

which is immediately seen to belong to the class (4.37).

4.4.1.2 A general FDN reverberators

The “vector comb filter” that we have analyzed in the previous section is an example of a class of filter
networks, known as Feedback Delay Networks (FDNs). Figure 4.15 shows a more general FDN structure
for artificial reverberation, that extends in many ways the one depicted in Fig. 4.14. First, it is a Single-
Input, Single-Output structure which uses two N × 1 vectors b = [bi] and c = [ci] to split the input into
N channels and to combine the N outputs in one channel. Second, low-pass filters Hlp,i(z) are cascaded
to the delay lines. Third, the final output y is corrected with an additional filter E(z) plus an additive
term dx. The transfer function of the system is almost immediately found to be:

Y (z)

X(z)
= cT

{
[III−D(z)A]−1D(z)

}
b · E(z) + d = cT

[
D(z−1)−A

]−1
b · E(z) + d, (4.39)
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where A = [aij ] is the feedback matrix of the system, and

D(z) =


z−m1Hlp,1(z) 0 · · · 0

0 z−m2Hlp,2(z) · · · 0
...

...
. . . 0

0 0 · · · z−mNHlp,N (z)


is the delay matrix of the system. We shall see that this structure allows to orthogonalize to a great extent
the reverberation parameters, as the various blocks can be independently tuned to fit desired values of
different reverberation parameters.

M-4.9
Realize the reverberant structure of Fig. 4.15. With the 4× 4 matrix given in Eq. (4.38), the structure of Fig. 4.14
is a special case of this.

M-4.9 Solution

function y = reverb_fdn(x,Fs,Tr,A,b,c,d,m);
% x: input signal; A: NXN feedback matrix; b: Nx1 array of input weights;
% c: 1XN array of output weights; d: scalar weight for input-to-output contrib.
% m: N-dim array of line delays (in samples)

N=size(A,1); %dimension of the FDN
delaylines = zeros(max(m),N); %create and initialize N delay lines
[num_H,den_H,num_E,den_E] = lossy_fdn(Fs,Tr,m); %initialize lossy components

y = zeros(size(x)); %initialize output signal
for n = 1:length(x) %audio cycle

Y=zeros(N,1); % Y is the array of N signals after the lowpass filters
for i=1:N Y(i)= filter(num_H(i), den_H(i), delaylines(m(i),i) ); end
y(n)= filter(num_E, den_E, c*Y) +d*x(n); %compute output
linein =b*x(n) + A*Y; %compute new input to lines
delaylines = circshift(delaylines,1); %circular shift lines
delaylines(1,:) = linein; %write lines

if(mod(n,round(length(x)/20))==0) fprintf(’%d%%\n’,round(n/length(x)*100)); end
end

Note that in this case we had to write an audio loop, since an explicit formulation of the rational transfer
function (4.39) is not available in general: for this reason this realization is extremely inefficient. Note
also that we are using an auxiliary transfer function lossy fdn: see M-4.11 below.

Since an “ideal” late reverberation impulse response should resemble exponentially decaying noise,
it is useful to start designing a lossless reverberator (with infinite reverberation time) and work on making
it a good noise generator. Once this lossless prototype has been designed, one can work on obtaining
the desired reverberation time in each frequency band. We associate to the FDN of Fig. 4.15 the lossless
prototype of Fig. 4.16.

What does the losslessness requirement imply to the feedback matrix A? We know that by definition
of losslessness the equality

∫
ω

{∑n
i=1

∣∣Yi(ejω) ∣∣2} dω =
∫
ω

{∑n
i=1

∣∣Xi(e
jω)
∣∣2} dω must hold. More-

over it is a general result that a multidimensional filter is lossless if and only if its frequency response
matrix H(ejω) is unitary, i.e. H(ejω)H∗(ejω) = III (where ∗ denotes the complex-conjugate transpose
as usual). In our case, it is quite straightforward to prove that A being unitary is a sufficient condition
for the overall frequency response matrix to be unitary. Moreover the entries aij have to be real in order
for the system to output a real signal y[n], and a unitary matrix with real entries is an orthogonal matrix.
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Figure 4.16: Lossless prototype network associated to the Feedback Delay Network of Fig. 4.15.

In conclusion, if A is orthogonal then the network of Fig. 4.16 is lossless. Note however that this
condition is sufficient but not necessary, thus the system may be lossless even with a non-orthogonal
feedback matrix. We will return to this point in Sec. 4.4.2.

4.4.1.3 Designing the lossless prototype

Designing the lossless prototype means choosing the dimension N , the mi’s, and the feedback matrix
A. Let us start with the dimension N and the delay lengths mi. Together with the feedback matrix these
parameters determine the buildup of reflection density. The criteria that we have examined in Sec. 4.3
(see in particular Eqs. (4.30, 4.31) can be applied also in this case with satisfactory results. Note however
that Eqs.Eqs. (4.30, 4.31) are no longer valid here, since, a non-diagonal feedback matrix increases the
modal and reflection densities. Therefore in general the parameters have to be chosen on the basis of
empirical observations. It is generally noted that N = 8 to 16 lines with a total delay

∑
imi/Fs of 1 to

2 seconds already produce a response perceptually undistinguishable from white noise.
Let us now consider the lossless feedback matrix A. The simplest orthogonal matrix is a diagonal

matrix whose diagonal elements (which are the eigenvalues) have unit modulus: as already seen this
choice corresponds to a parallel of ordinary comb filters. A more interesting family of orthonormal ma-
trices are Householder reflection matrices. A specific Householder matrix is defined given the reference
vector u = [1, . . . , 1]T :

A = III− 2

N
uuT , then Ax =

 x1 − 2
N

∑
i xi

...
xN − 2

N

∑
i xi

 , (4.40)

for any input vector x. We will see in Sec. 4.4.2 that u can be interpreted as the specific vector about
which an input vector is reflected by the matrix A in an N -dimensional space. A more general for-
mulation may be obtained by replacing the identity matrix in Eq. (4.40) with any N × N permutation
matrix.

The explicit expression for Ax in Eq. (4.40) shows that applying a Householder matrix to a vector
requires N −1 additions and one multiplication to obtain the term 2

N

∑
i xi, plus N additions to subtract

this term from x. Therefore the matrix-times-vector operation is only O(N) as opposed to the usual
O
(
N2
)
.

Another interesting feature of the Householder feedback matrix is that A does not have null entries
for N ̸= 2. This is a desirable property since it implies that every delay line feeds back to every other
delay line, reinforcing the build-up of reflection density. The case N = 4 is especially nice, since the
matrix entries all have the same magnitude and A is therefore “balanced”. For larger N the diagonal
becomes larger than the off-diagonal elements, and A approaches a diagonal matrix as N → ∞. Due to
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the elegant balance of the N = 4 case, a larger (N = 16) feedback matrix can be constructed as follows:

A =
1

2


A4 −A4 −A4 −A4

−A4 A4 −A4 −A4

−A4 −A4 A4 −A4

−A4 −A4 −A4 A4

 , where A4 :=
1

2


1 −1 −1 −1

−1 1 −1 −1
−1 −1 1 −1
−1 −1 −1 1

 (4.41)

is the 4× 4 Householder matrix.
Other types of unitary matrices may be used. In particular, unitary feedback matrices can be derived

from Hadamard matrices. A Hadamard matrix H is defined as an N ×N , (−1, 1)-matrix (i.e. a matrix
whose elements consist only of the numbers -1 or 1) with the additional property that HHT = NIII. This
means that A = H/

√
N is an orthogonal matrix whose entries all have the same magnitude 1/

√
N . In

Sec. 4.4.2 we discuss other classes of feedback matrices.

4.4.1.4 Designing lossy components

So far we have designed the lossless prototype. Now we have to correct it by inserting the low-pass
filters Hlp,i and the correction filter E. The Hlp,i’s set the reverberation time from infinity to a finite
value, by moving the poles slightly inside the unit circle. More precisely, they can be chosen to tune the
reverberator to a desired, frequency-dependent reverberation time Tr(ω).

The following analysis assumes that the filters Hlp,i are all defined as Hlp,i(z) = [G(z)]mi . This
is conceptually equivalent to substituting each delay z−1 in the lines with a “damped delay” G(z)z−1,
where the factor G(z) represents a filtering per sample in the propagation medium. We also make the
simplifying hypotheses that (1) the response G(ejω) is zero-phase and that (2) the magnitude

∣∣G(ejω) ∣∣
is close to 1. Now assume that the lossless prototype has poles ejωi/Fs , i = 1, . . . N , then the insertion
of the low-pass filters moves the poles to

pi ≈ Rie
jωi/Fs , with Ri = G

(
Rie

jωi/Fs

)
≈ G

(
ejωi/Fs

)
, (4.42)

where we have exploited our first simplifying hypothesis in assuming that the filters affect the radius
of the poles and not their angles, and we have exploited our second simplifying hypothesis in the last
approximation for Ri.

We know that the component of the impulse response arising from the ith pole of the system decays
like Rn

i , as a function of discrete time n. Therefore the time needed for this response to decay by 60 dB

(i.e. Tr(ωi)) satisfies the relation 20 log10

(
R

Tr(ωi)Fs

i

)
= −60 dB. From Eq. (4.42), and recalling that

Hlp,i = Gmi , we conclude that the ideal low-pass filter satisfies the relation

20 log10

∣∣∣Hlp,i

(
ejωi/Fs

) ∣∣∣ = −60
mi

FsTr(ωi)
. (4.43)

Having been derived in the assumption of zero-phase, this expression disregards the phase response of
the Hlp,i’s, which has the effect of slightly modifying the effective length of the delay mi. It is usually
assumed that in practice this correction has no perceivable effect and can therefore be ignored.

A consequence of incorporating the filters Hlp,i(z) into the delay lines is that the energy of each
decaying mode of the system response will be affected, i.e. the envelope of the frequency response of
the system will no longer be flat. In particular, for exponentially decaying reverberation the envelope is
proportional to the reverberation time at all frequencies. The role of the filter E(z) (often referred to as
the tonal correction filter) is to compensate for this effect: a flat frequency response envelope is restored
if the magnitude response of E(z) is inversely proportional to the reverberation time:∣∣∣E (ejω/Fs

) ∣∣∣ ∼ 1√
Tr(ω)

. (4.44)
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Having specified ideal filter responses for the Hlp,i’s and for E, any number of filter-design methods
can be used to find low-order filters that reasonably approximate Eqs. (4.43, 4.44). Note that this design
effectively decouples the control over reverberation time from the overall reverberator gain.

M-4.10
Write a function that computes filter coefficients for Hlp,i(z) and E(z), given a function Tr(ω) specified on a set
of points {ωk}, and given the filter order k.

Since the function Tr(ω) is typically very smooth and slowly varying with respect to ω, the filters
Hlp,i(z) can be chosen to have low order. In particular, first-order filters of the form (4.33) can be used:

Hlp,i(z) =
g1,i

1− g2,iz−1
. (4.45)

In this case one can use Eq. (4.43) to find the gains (we only report results):

g2,i =
ln(10)

4
log10(ai)

(
1− Tr(0)

2

Tr(πFs)2

)
, g1,i = ai(1− g2,i) (4.46)

where ai = 10
−3

mi
FsTr(0) is determined from the desired reverberation time at ω = 0, while g2,i sets the

reverberation time at high frequencies.
If first-order low-pass filters of the form (4.45) are used, then one can use a correction filter which is

also first-order and is determined as follows (we only report results):

E(z) =
1− bz−1

1− b
, with b =

1− Tr(πFs)
Tr(0)

1 + Tr(πFs)
Tr(0)

. (4.47)

M-4.11
Write a function that computes filter coefficients for Hlp,i(z) and E(z) in the first-order case described above,
given a function Tr(ω) specified on a set of points {ωk}.

M-4.11 Solution

function [num_H,den_H,num_E,den_E] = lossy_fdn(Fs,Tr,m);
%computes (first-order) lowpass filters H and correction filter E for a fdn,
%given an array of frequency-dependent Tr and the array m of fdn delays

N=length(m);
for i=1:N

a=10ˆ( -3*m(i)/(Fs*Tr(1)) );
g2=(log(10)/4)*log10(a)*(1- ( Tr(1)ˆ2/Tr(length(Tr))ˆ2 ) );
num_H(i,:)=[a*(1-g2), 0];
den_H(i,:)=[1, -g2];

end
b=(1-(Tr(length(Tr))/Tr(1)))/(1+(Tr(length(Tr))/Tr(1)));
num_E=[1, -b]; den_E=[1-b, 0];
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Figure 4.17: DWN reverberator

4.4.2 Digital waveguide networks

4.4.2.1 The link between FDNs and DWNs

In Eq. (4.40) we have introduced a specific Householder reflection matrix, constructed from the reference
vector u = [1, . . . , 1]T . In fact a Householder matrix can be constructed given any reference vector u.
We now want to provide a geometric interpretation of this family of matrices.

Consider the projection matrix P u, which orthogonally projects any vector x onto the vector u:

P u =
uuT

uT u
=

uuT

∥u ∥2
, then xu := P u x = u

⟨u,x⟩
∥u ∥2

(4.48)

is the orthogonal projection of x onto u. Now consider the vector x⊥
u := (III−P u)x: this is the projection

of x onto the hyperplane orthogonal to u, since it is easily verified that x⊥
u ⊥ xu and that x⊥

u +xu = x.
Finally consider the vector y obtained by reflecting x about u. Elementary geometrical considera-

tions allow to conclude that this vector is the difference between xu and x⊥
u :

y = xu − x⊥
u = P ux− (III− P u)x = (2P u − III)x. (4.49)

The matrix (2P u − III) is a Householder matrix as defined in Eq. (4.40), except for a sign. Therefore
we conclude that given a reference vector u the corresponding Householder matrix reflects any vector x
about u.

Having undestood the meaning of Householder matrices, we now construct a digital waveguide net-
work (DWN) that is equivalent to the FDN lossless prototypes considered in the previous section. We
start by considering the physical resonator depicted in Fig. 4.17(a). It is composed by N acoustic bores
connected in parallel. In Chapter Sound modeling: source based approaches we have derived the N ×N scattering
matrix A that relates the incoming pressure waves p+ to the outgoing pressure waves p−. In this section
we reconsider that matrix when the pressure waves in the ith bore are defined as

p+i =
√

Γi
pi + Ziui

2
, p−i =

√
Γi
pi − Ziui

2
, (4.50)

where Zi and Γi = 1/Zi are the wave impedance and admittance of the ith bore. These are often referred
to as normalized waves, and differ from our previous definition of wave variables uniquely for the scaling
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factor
√
Γi. It is straightforward to see that normalized pressure waves are scattered as p− = Ap+,

where

A =



2Γ1
ΓJ

− 1, 2
√
Γ1Γ2
ΓJ

, · · · 2
√
Γ1ΓN
ΓJ

2
√
Γ2Γ1
ΓJ

, 2Γ2
ΓJ

− 1, · · · 2
√
Γ2ΓN
ΓJ

...
. . .

...
2
√
ΓNΓ1

ΓJ
, 2

√
ΓNΓ2

ΓJ
, · · · 2ΓN

ΓJ
− 1


, where ΓJ =

N∑
l=1

Γl. (4.51)

This normalized scattering matrix is immediately recognized as a Householder matrix:

A =
2

∥Γ ∥
ΓΓT − III, with Γ :=

[√
Γ1,
√

Γ2, . . . ,
√

ΓN

]
, (4.52)

so we have this interesting geometrical interpretation: scattering of normalized pressure waves corre-
sponds to a reflection around the vector Γ.

If the acoustic bores are lossless and with ideal closed terminations, and if the length (in samples)
of the ith bore is mi/2, then the physical resonator of Fig. 4.17(a) can be modeled with the digital
waveguide network given in Fig. 4.17(b). Now compare this scheme with the lossless FDN of Fig. 4.16:
apart from the input signals xi[n], the two schemes implement the same computational structure. The
incoming pressure waves p+i [n] correspond to the output signals yi[n], and the outgoing pressure waves
p−i [n] correspond to the feedback signals generated by the feedback matrix.

4.4.2.2 General lossless scattering matrices

Showing the equivalence between DWNs and FDNs is more than a mere intellectual exercise: we can
now design an entire new class of lossless FDN prototypes, in which the feedback matrix A is given by
Eq. (4.51) and have a straightforward physical interpretation.

Note that the matrix in Eq. (4.51) is still orthogonal (it is easy to verify that AAT = III. We can
push the generalization further by generalizing our definition of losslessness, and consequently define
new classes of lossless feedback matrices that are neither physical nor orthogonal. Consider a Hermitian,
positive-definite N ×N matrix Γ (we use this notation because we interpret Γ as a generalized junction
admittance). This matrix induces a norm ∥ · ∥Γ, defined as follows: ∥x ∥Γ := xTΓx for any real
valued N -dimensional vector x. We can then define a waveguide scattering matrix A to be “lossless”
if the scattering preserve the norm, i.e. the equality ∥p+ ∥Γ = ∥p− ∥Γ holds. This condition is clearly
equivalent to the condition

ATΓA = Γ (4.53)

for the scattering matrix A. In the case Γ = III, the norm ∥ · ∥Γ is the euclidean norm and the above
equation reduces to the condition of A being orthogonal. In the general case Γ ̸= III it can be shown
that Eq. (4.53) holds if and only if A has eigenvalues with modulus 1 and N linearly independent
eigenvectors. We do not provide a proof of this characterization: intuitively it means that when such
a feedback matrix is used in a lossless FDN prototype the system poles all have unit modulus and thus
the system response consists of non-decaying eigenmodes.

Clearly orthogonal matrices are lossless in this sense, since they have unitary eigenvalues and pair-
wise orthogonal eigenvectors. Another class of matrices that satisfy this condition are triangular matrices:
designing a triangular matrix with unitary eigenvalues is straightforward since we know from linear alge-
bra that they lie on the diagonal. Additional care is required in order to ensure that the triangular matrix
possesses N independent eigenvectors.
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4.4.2.3 Waveguide meshes

So far we have seen DWNs in analogy with FDNs. In this section we discuss a new multidimensional
waveguide structure, named waveguide mesh, that can be used to physically simulate resonating enclo-
sures. What follows is only a quick and qualitative introduction to the subject, the interested reader can
refer to the bibliography.

Consider again the N-D D’Alembert equation (4.1). Similarly to what we have done in the 1-D case
(Chapter Sound modeling: source based approaches), we can simulate the traveling wave solution by using delay
lines. In this case the delay lines are arranged in a mesh, that represents waves propagating in the x, y, z
directions. At each node of the mesh continuity constraints must be satisfied, namely the pressure waves
in each direction must provide the same pressure value.5 This means that at each node of the mesh
the incoming pressure waves are scattered by a matrix identical to the matrix A given in Chapter Sound

modeling: source based approaches, in which all the incoming branches share the same impedance:

A =


2
N − 1 2

N . . . 2
N

2
N

2
N − 1 . . . 2

N
...

. . .
...

2
N

2
N . . . 2

N − 1

 . (4.54)

In order to clarify this idea, let us examine the 2-D case shown in Fig. 4.18. The outgoing pressure
waves at each node are computed as p− = Ap+, i.e.

p−i [n] = pJ [n]− p+i [n] (i = 1 . . . 4) where pJ [n] =

∑4
i=1 p

+
i [n]

2
(4.55)

is the junction pressure. It can be shown that this rectangular waveguide mesh is equivalent to a finite-
difference numerical solution of the the 2-D D’alembert equation, in which the pressure at a certain node
is expressed in terms of the pressures at its neighboring nodes one sample earlier, and itself two samples
earlier.

The rectangular layout depicted in Fig. 4.18 is not the only possible one: other geometries may be
used for assembling the mesh, like triangular, hexagonal, and so on. The choice of the geometry has
a major influence on the dispersion error in the mesh, i.e the error in propagation speed as a function
of frequency and direction along the mesh. It can be shown that the triangular waveguide mesh is the
simplest 2-D mesh geometry with the least dispersion variation as a function of direction of propagation.
In other words, the triangular mesh is closer to isotropic than all other known elementary geometries.
Isotropy can be obtained also through interpolation, i.e. by using non integer propagation delays, but
computational costs are higher. As far as frequency dispersion is concerned, frequency-warping methods
can be used to minimize it in the mesh.

The waveguide meshes analyzed so far simulates lossless propagation in an infinite medium. In order
to model something similar to a real resonating enclosure we must add losses and boundary conditions
into the structure. The techniques discussed in Chapter Sound modeling: source based approaches to simulate
lossless in 1-D wave propagation can be extended to the waveguide mesh: the basic idea is once again that
wave propagation during one sampling interval (in time) is associated with linear filtering by G(z). The
problem of modeling mesh boundaries is particularly important in the context of artificial reverberation:
in order to obtain high temporal reflection densities, maximally diffusing boundaries have to be modeled.

As efficient solutions are found to deal with the above mentioned problems, 3-D waveguide meshes
are being more and more used for the simulation of acoustic spaces.

5In this section we are using waveguide meshes to simulate resonating enclosures and thus we work with pressure waves
and consider parallel junctions. Waveguide meshes can also be used to simulate mechanical resonators, e.g membranes, and in
that case it is natural to choose velocity waves and to consider series junctions at mesh nodes.
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Figure 4.18: 2D rectilinear digital waveguide mesh.

4.5 Spatial hearing

In the previous sections we have learned how a sound produced by an acoustic source is affected by the
surrounding environment. So far we have assumed that the receiver is a point in the space, which is
reasonable e.g. for a omnidirectional microphone. We now want to study a different type of receiver, i.e.
a human receiver with two ears and one head in between.

Throughout the next sections our assumption will be that the two acoustic pressure signals at the
two eardrums contain all the information that is used by a human listener to elaborate his/her auditory
perception. In other words we assume that if different acoustic events (e.g. different sounds, or different
sound/listener positions in the environment, etc.) produce the same pair of acoustic pressures at the
eardrums, they will be perceived by a human listener as the same acoustic event.6 In particular these
signal will provide the listener with spatial information, about the location of the sound source relative
to the listener.

With this assumption, our goal is to understand and simulate how sound is transformed in his path
to the eardrum by neighboring parts of the body (such as head and shoulders), by the pinna (the visible
portion of the outer ear), and by the ear canal (the meatus that leads to the eardrum).

4.5.1 The sound field at the eardrum

Spatial attributes of the sound field are coded into temporal and spectral attributes of the acoustic pressure
at the eardrum, via the filtering effect of three main elements: head, external ear, and torso/shoulders.

6In fact this is not entirely correct. Sound reaches our ears also through bone conduction. Moreover auditory perception
interacts with other types of information (e.g., conflicting visual cues) and is affected by adaptation and expectations.
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Figure 4.19: Estimate of ITD in the case of a distance sound source (plane waves) and spherical head.

4.5.1.1 Head

Our ears are not isolated objects in space. They are located, at the same height, on opposite sides of an
acoustically rigid object: the head. This acts as an obstacle to the free propagation of sound and has two
main effects: (1) it introduces an interaural time difference (ITD), because a sound wave has to travel an
extra distance in order to reach the farthest ear, and (2) it introduces an interaural level difference (ILD)
because the farthest ear is acoustically “shadowed” by the presence of the head.

An approximate yet quite accurate description of the ITD can be derived using a few simplifying
assumptions, in particular by considering the case of “distant” sound sources and a spherical head: this
situation is depicted in Fig. 4.19. The first assumption implies that the sound waves that strike the
head are plane waves. Then the extra-distance ∆x needed for a sound ray to reach the farthest ear is
estimated from elementary geometrical considerations, as shown in Fig. 4.19, and the ITD is simply
∆x/c. Therefore

ITD ∼ a

c
(θ + sin θ), (4.56)

where a is the head radius and θ is the azimuth angle that defines the direction of the incoming sound on
the horizontal plane. This formula shows that the ITD is zero when the source is directly ahead (θ = 0),
and is a maximum of a/c(π/2+1) when the source is off to one side (θ = π/2). This represents an ITD
of more than 0.6 ms for a head radius a = 8.5 cm, which is a realistic value.

While it is acceptable to approximate the ITD as a frequency independent parameter, as we did in
Eq. (4.56), the ILD is highly frequency dependent: at low frequencies (i.e., for wavelengths that are long
relative to the head diameter) there is hardly any difference in sound pressure at the two ears, while at
high frequencies differences become very significant. Again, the ILD can be studied in the case of an
ideal spherical head of radius a, with a point sound source located at a distance r > a from the center
of the sphere. It is customary to use the normalized variables µ = ωa/c (normalized frequency) and
ρ = r/a (normalized distance). If we consider a point on the sphere, then the diffraction of an acoustic
wave by the sphere seen on the chosen point is expressed with the transfer function

Hsphere(ρ, θinc, µ) = −ρ
µ
e−iµρ

+∞∑
m=0

(2m+ 1)Pm(cos θinc)
hm(µρ)

h′m(µ)
, (4.57)

where Pm and hm are the mth order Legendre polynomial and spherical Hankel function, respectively,
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Figure 4.20: Magnitude response
∣∣Hsphere(∞, θinc), µ

∣∣ of a sphere for an infinitely distant source.

and θinc is the angle of incidence, i.e. the angle between the ray from the center of the sphere to the source
and the ray to the measurement point on the surface of the sphere.7 Normal incidence corresponds to
θinc = 0, while the sphere point opposite to the source is at θinc = π.

It is known that the Hankel function hm(x) admits an asymptotic approximation as the argument x
goes to infinity. By exploiting this approximation one can study the behavior of the transfer function
Hsphere(∞, θinc, µ) as the distance r between the source and the sphere becomes arbitrarily large. The
approximate solution

∣∣Hsphere(∞, θinc), µ
∣∣ is plotted in Fig. 4.20.

At low frequencies the transfer function is not directionally dependent and the magnitude
∣∣Hsphere

∣∣
is essentially unity for any angle θinc. When µ exceeds 1 the dependence on θinc becomes noticeable.
The response increases around the front of the sphere, and in particular exhibits a 6 dB boost at high
frequencies near the front of the sphere (

∣∣Hsphere(∞, 0,∞)
∣∣ = 2), consistently with the requirement

that in this limit the solution must reduce to that of a plane wave normally incident on a rigid plane
surface.

∣∣Hsphere
∣∣ is approximately flat when θinc is around 100 degrees, and progressively decreases

around the back of the sphere. Note however that the minimum response does not occur at the very
back (θinc = π). Instead, this point exhibits a so-called “bright spot” effect, which is due to the fact
that all the waves propagating around the sphere arrive at that point in phase. At very high frequencies
the bright-spot lobe becomes extremely narrow, and the back of the sphere is effectively in a sound
shadow. Finally, note that interference effects caused by waves propagating in various directions around
the sphere introduce ripples in the response that are quite prominent on the shadowed side.

4.5.1.2 The external ear

The external ear consists of the pinna and the ear canal until the eardrum. Beyond the eardrum are the
middle ear and the internal ear. For the purpose of this chapter we are interested in the external ear only.
In Chapter Auditory based processing we will study the middle and internal ear.

The pinna, schematically depicted in Fig. 4.21(a), has a characteristic “bas-relief” form with features

7We are using a different notation with respect to the azimuth angle θ used previously, in order to avoid confusion. Given a 2-
D reference system like that in Fig. 4.19, the transfer functions (4.57) at the right and left ear will use the angles θ(r)inc = π/2−θ

and θ
(l)
inc = π/2 + θ, respectively.
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Figure 4.21: External ear: (a) pinna, and (b) ear canal.

that differ greatly from one individual to another (just look at people’s ears). The pinna is connected to
the ear canal, depicted in Fig. 4.21(b). It can be approximately described as a tube of constant width,
with walls of high acoustic impedance. At the end opposite to the pinna, the ear canal is terminated by
the eardrum diaphragm.

At a first approximation the acoustic behaviour of the ear canal is easily understood: it behaves like
a one-dimensional resonator. On the other hand the pinna has much more complex effects, as it basically
acts like an acoustic antenna. Its resonant cavities amplify some frequencies, and its geometry leads to
interference effects that attenuate other frequencies. Moreover, its frequency response is directionally
dependent. Acoustically it acts like a filter whose transfer function depends in general on the distance
and direction of the sound source relative to the ear. Like for any other resonator, we can interpret these
filtering effect either by looking at reflections of sound rays or in the frequency domain.

First approach: external ear as a sound reflector. Figure 4.22(a) shows two different directions of
arrival. In each case there are two paths from the source to the ear canal –a direct path and a longer
path following a reflection from the pinna. At moderately low frequencies, the pinna essentially collects
additional sound energy, and the signals from the two paths arrive in phase. However, at high frequencies,
the delayed signal is out of phase with the direct signal, and destructive interference occurs. The greatest
interference occurs when the difference in path length is a half wavelength: this produces a “pinna
notch”. Since the pinna is a more effective reflector for sounds coming from the front than for sounds
from above, the resulting notch is much more pronounced for sources in front than for sources above. In
addition, the path length difference changes with elevation.

However reflection models are suspect whenever the dimensions of the reflecting surfaces are com-
parable to (or even smaller than) the acoustic wavelengths under exam. At the very least, the reflection
coefficients should be frequency dependent. A more thorough approach is modal analysis of the exter-
nal ear resonator, through measurements of frequency responses using an imitation pinna and a ear canal
with high impedance termination. Such measurements give results like those depicted in Fig. 4.22(b).
First resonance is that of a open-closed tube ∼ 33% longer then the ear canal: the pinna acts as a pro-
longation of the ear canal with an aperture effect. Second resonance is a resonance of the cavum concha
alone: the pressure distribution is similar to what would be obtained if the canal were plugged. The
higher resonances instead are again associated to longitudinal standing waves: these are not very widely
spaced and are quite dependent on the individual, therefore it can combine in a single broad peak of the
magnitude response.

The synthetic conclusion of this section is then that the pinna and the ear canal form a systems of
acoustic resonators, whose resonances are excited to different extents depending on the direction and
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Figure 4.22: Effects of pinna: (a) direction-dependent reflections, and (b) resonances.

distance of the sound source.

4.5.1.3 Torso and shoulders

In the discussion up to now we have not considered a third element that, together with the head and the
external ear, contributes to the shaping of the sound field at the eardrum: the torso. Torso and shoulders
affect incident sound waves in two main respects. First, they provide additional reflections that sum up
with the direct sound. Second, they have a shadowing effect for sound rays coming from below.

The geometry of the torso is quite complicated. However a simplified description can be derived
by considering an ellipsoidal torso below a spherical head. These kind of approximate descriptions are
sometimes called “snowman models”, for obvious reasons. Figure 4.23(a) depicts a snowman model and
shows the main effects of the ellipsoidal torso on the sound field at the ear.

Reflections: Fig. 4.23(a). If we measured the impulse response at the right ear for the sound source
locations depicted in Fig. 4.23(a) we would see that the initial pulse is followed by a series of subsequent
pulses, whose delays increase and then decrease with elevation. These additional pulses are caused by
reflections on the torso.

We could exploit the simplified geometry of the snowman model to compute analitycally the delay of
the reflected rays, given the model parameters and the sound source position. However some important
remarks can already be made from a qualitative analysis. First, the delay between the direct sound and the
reflected ray does not vary much if the sound source moves on a circumference in the horizontal plane
(especially if its radius is large compared to the head radius). Second, the delay varies considerably
if the sound source moves vertically, and in particular the reflected pulses are maximally delayed for
sound source locations right above the listener. If we consider that the distance from the ear canal to the
shoulder is roughly 16 cm, then a reflected ray from a source right above the subject has to travel an extra
distance of approximately 32 cm, which corresponds to a delay of almost 1 ms.

In the frequency domain the torso reflections act as a comb filter, introducing periodic notches in
the spectrum. The frequencies at which the notches occur are inversely related to the delays, and thus
produce a pattern that varies with the elevation of the source. The lowest notch frequency corresponds
to the longest delay. Delays longer than a sixth of a millisecond will produce one or more notches below
3 kHz, which is approximately the lowest frequency where pinna effects start to be noticeable.

Modeling the effects of the torso as specular reflections means accounting for only a part of the
story. First, reflection is a high frequency concept. Second, and perhaps more important, as the source
descends in elevation, a point of grazing incidence is reached, below which torso reflections disappear
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Figure 4.23: Effects of torso: (a) reflections, and (b) shadowing.

and torso shadowing emerges. As shown in Fig. 4.23(b), rays drawn from the ear to points of tangency
around the upper torso define a torso-shadow cone. Clearly, the specular reflection model does not
apply within the torso shadow cone. Instead, diffraction and scattering produce a qualitatively different
behavior, characterized by a stronger attenuation for high frequencies (i.e. for wavelength comparable to
or smaller than the size of the torso).

Although the acoustic effects of torso and shoulders are not as strong as those introduced by the
pinna, they are important because they appear at lower frequencies, where typical sound signals have
most of their energy and where the response of the pinna is essentially flat. In terms of frequency ranges
the effects provided by the torso are therefore complementary to those provided by the pinna.

4.5.1.4 Head-related transfer functions

In the preceding sections we have investigated the influence of hear, torso and external ear on the sound
field at the eardrum. All the effects that we have examined are linear, which means that (1) they can be
described by means of transfer functions, and (2) they combine additively. Therefore the sound pressure
produced by an arbitrary sound source at the eardrum is uniquely determined by the impulse response
from the source to the eardrum. This is called Head-Related Impulse Response (HRIR), and its Fourier
transform is called Head Related Transfer Function (HRTF). The HRTF captures all of the physical
effects that we have examined separately in the previous sections.

The HRTF is a function of three spatial coordinates and frequency. Given the approximately spherical
shape of the head, it is customary to use the spherical coordinates depicted in Fig. 4.24, which use
slightly different notations and conventions with respect to more traditional definition (see our definition
of spherical coordinates in Chapter Sound modeling: source based approaches). Specifically, in this context the
vertical and horizontal angular coordinates azimuth and elevation are noted as θ and ϕ, respectively,
while the radial coordinate is named range and noted as r. Moreover, two different spherical coordinate
systems are used in the literature. Figure 4.24(a) show the most popular one, sometimes called vertical
polar coordinate system: in this system the azimuth is measured as the angle from the yz plane to a
vertical plane containing the source and the z azis, and the elevation is measured as the angle up from
the xy plane. With this choice, surfaces of constant azimuth are planes through the z axis, and surfaces
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Figure 4.24: Spherical coordinate systems used in the definition of HRTFs: (a) vertical-polar coordinate
system, and (b) interaural-polar coordinate system.

of constant elevation are cones concentric about the z axis.
In alternative the so-called interaural-polar coordinate system, shown in Fig. 4.24(b), is sometimes

used. In this case the elevation is measured as the angle from the xy plane to a plane containing the
source and the x axis, and the azimuth is then measured as the angle from the yz plane. With this choice,
surfaces of constant elevation are planes through the x axis, and surfaces of constant azimuth are cones
concentric with the x axis. One advantage of this system is that it makes it significantly simpler to express
interaural differences at all elevations (in particular the constant-azimuth cones are the loci of points that
share equals ILD and ITD values for a spherical head).

In the remainder of this chapter we will specify, when necessary, whether we are using the vertical-
polar or the interaural-polar coordinate system. In any case we will indicate the HRTFs asH(l),(r)(r, θ, ϕ, ω),
where superscripts (l), (r) indicate the HRTF at the left and right ear, respectively. When r → +∞
(which in practice means r > 1 m, a condition that is met in most applications), the source is said to
be in the far field. In this case we will use the notation H(l),(r)(θ, ϕ, ω). Finally, in the hypotesis of a
perfectly symmetrical geometry will will simply write H(θ, ϕ, ω), with H(r)(θ, ϕ, ω) = H(θ, ϕ, ω) and
H(l)(θ, ϕ, ω) = H(−θ, ϕ, ω).

We formally define the HRTF at one ear as the frequency-dependent ratio between the sound pressure
level (SPL) Φ(l),(r)(θ, ϕ, ω) at the corresponding eardrum and the free-field SPL at the center of the head
Φf (ω) as if the listener were absent:

H(l)(θ, ϕ, ω) =
Φ(l)(θ, ϕ, ω)

Φf (ω)
, H(r)(θ, ϕ, ω) =

Φ(r)(θ, ϕ, ω)

Φf (ω)
. (4.58)

Figures 4.25(a) and 4.25(b) show two examples of HRTFs (magnitude response only): all the effects
examined in this section combine to form a surprisingly complicated function of θ and ϕ.

4.5.2 Perception of sound source location

This is complicate matter. Many competing and interfering effects can influence auditory perception of
sound source location. In this section we provide a brief summary, but we warn the reader to be cautios
when dealing with this matter and always to be aware of limitations and simplifying hypoteses.
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Figure 4.25: Example of magnitude of HRTFs (a) in the xy plane (θ ∈ [−π/2, π/2], ϕ = 0) and (b) in
the yz plane (θ = 0, ϕ ∈ [−π/4, π]). Interaural polar coordinates are used.

4.5.2.1 Azimuth perception

The horizontal placement of the ears maximizes differences for sound events occurring around the lis-
tener, rather than from below or above, enabling audition of sound sources at the terrain level and outside
the visual field of view. The ITD and the ILD are considered to be the key parameters for azimuth
perception, in what is sometimes referred to as the Duplex Theory of localization.

For the sake of clarity, consider a sine wave reaching the left and right ear. At low frequencies the
ITD shifts the waveform a fraction of a cycle, which is easily detected: see Fig 4.26(a). Qualitatively one
can say that if the half wavelength is larger than the size of the head, then it is possible for the auditory
system to detect the phase of these waveforms unambiguously, and the ITD cue can function. On the
other hand, at high frequencies there is ambiguity in the ITD, since there can be several cycles of shift:
see Fig 4.26(b). Qualitatively, we can consider the critical point to be the point where the half wavelength
becomes shorter than the head size: for shorter wavelengths, the phase information in relation to relative
time of arrival at the ears can no longer convey which is the leading wavefront. The critical point in
frequency is usually assumed to be a value around 1.5 kHz.

If we now look at the ILD the situation is reversed. As we have seen in Sec. 4.5.1 (see in particular
Fig. 4.20), at low frequencies the head transfer function is essentially flat and therefore there is little ILD
information. On the other hand, at high frequencies the ILD is more marked and can become very large.
For this reason the Duplex Theory asserts that the ILD and the ITD are complementary cues to azimuth
perception, and that taken together they provide azimuth perception throughout the audible frequency
range.

This is not completely true, though. In fact timing information can be exploited for azimuth percep-
tion also in the high frequency range because the timing differences in amplitude envelopes are detected.
Again, for the sake of clarity consider a sine wave that is modulated in amplitude as in Fig. 4.26(c). Then
an ITD envelope cue, sometimes referred to as Interaural Envelope Difference (IED) can be exploited,
based on the hearing system’s extraction of the timing differences from the transients of amplitude en-
velopes, rather than from the timing of the waveform within the envelope. This is demonstrated by the
so-called Franssen Effect: if a sine wave is suddenly turned on and a high-pass-filtered version is sent
to a loudspeaker “A” while a low-pass filtered version is sent to a loudspeaker “B”, most listeners will
localize the sound at A. This is true even if the frequency of the sine wave is sufficiently low that in
steady state most of the energy is coming from B.

The information provided by ITD and ILD can be ambiguous. If we assume the spherical geometry of
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Figure 4.26: Time differences at the ears; (a) non ambiguous ITD, (b) ambiguous ITD, and (c) IED.

Fig. 4.19, a sound source located in front of the listener at a certain θ, and a second one located at the rear,
at π − θ, provide identical ITD and ILD values. In reality ITD and ILD will not be exactly identical at θ
and π− θ because (1) human heads are not spherical, (2) there are asymmetries and other facial features,
and (3) ears are not positioned as in Fig. 4.24 but lie below and behind the x axis. Nonetheless the
values will be very similar, and front-back confusion is in fact often observed experimentally: listeners
operate reversals in azimuth judgements, erroneously locating sources at the rear instead of at the front,
or viceversa. The former reversal occurs more often than the latter. Some argue that this asymmetry may
originate from a sort of ancestral “survival mechanism”, according to which if something (a predator?)
can be heard but not seen then it must be at the rear (danger!).

The Duplex Theory essentially works in anechoic conditions. But in everyday conditions reverbera-
tion can severely degrade especially ITD information. As we know, in a typical room reflections begin
to arrive a few milliseconds after the direct sound. Below a certain sound frequency, the first reflections
reach the ear before one oscillation period is completed. Before the auditory system estimates the fre-
quency of the incoming sound wave, and consequently infers the ITD, the number of reflections at the
ear has increased exponentially and the auditory system is not able to estimate the ITD. Therefore sounds
that possess energy in the low-frequency range only (indicatively below 250 Hz) are essentially impos-
sible to localize in a reverberant environment.8 Instead the IED is used, because the starting transient
provides unambiguous localization information, while the steady-state signal is very difficult to localize.
In conclusion we can state –with some risk of oversimplification– that high-frequency energy only is
important for localization in reverberant environments.

4.5.2.2 Lateralization and externalization

In Sec. 4.6 we will see that the simplest systems for spatial sound rendering are based on manipulation
of the interaural cues examined above, and on headphone-based auditory display. These systems can be
used in applications where only two-dimensional localization –in the horizontal plane– is required.

In this context, the term lateralization is typically used to indicate a special case of localization,
where the spatial percept is heard inside the head, mostly along the interaural axis (the x of Fig. 4.24),
and the means of producing the percept involves manipulation of ITD and/or ILD over headphones.
Lateralization illustrates a fundamental example of virtual, as opposed to actual, sound source position.
When identical monaural sounds are delivered from stereo headphones, the listener does not hear two
distinct sounds coming from the transducers, and instead perceives a single virtual sound source which
appears to be positioned at the center of the head. As ITD and ILD are increased, the perceived position
of the virtual sound source will start to shift toward one ear, along an imaginary line. Once a critical
value of the ITD or the ILD is reached, the perceived sound source will stop moving along the interaural
axis and will be located at one of the ears. This effect is sometimes termed inside-the-head localization

8This is why surround systems use many small loudspeakers for high frequencies and one subwoofer for low frequencies.
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Figure 4.27: Cone of confusion.

(IHL). Having knowledge of this effect is important since headphone playback is otherwise superior to
loudspeakers for transmitting virtual acoustic imagery in three dimensions.

Achieving externalization of the sound (i.e. in removing the IHL effect) is in many respects the
“sacred graal” of headphone-based spatial audio systems. It is not completely clear what additional
cues are most effective in producing sound externalization. However it has been observed by many
that externalization increases as the stimulation approximates more closely a stimulation that is natural
and that especially reverberation, either natural or artificial, can enhance dramatically externalization.
In general, IHL is not an inevitable consequence of headphone listening, simply because externalized
sounds can be heard through headphones in many instances.

4.5.2.3 Elevation perception

While the relevant cues for the localization of a sound source in the horizontal plane are relatively well
understood, things become more complicated when we consider non-null elevations.

Figure 4.27 shows that sound sources located anywhere on a conical surface extending out from the
ear of a spherical head produce identical values of ITD and ILD. These surfaces are often referred to as
cones of confusion, and extend the concept of front/back confusion that we have examined above. Of
course this situation is only theoretical: in reality ITD and ILD will never be completely identical on the
cone of Fig. 4.27, because of the facial features and asymmetries already mentioned. Nonetheless, when
ITD and ILD cues are maximally similar between two locations, a potential for confusion between the
positions exists in the absence of other spatial cues.

The directional effects of the pinnae can disambiguate this confusion, and are considered to be par-
ticularly important for vertical localization. The role of the pinnae in improving vertical localization can
be evaluated experimentally e.g. by comparing judgments made under normal conditions to a condition
where the pinnae are bypassed or occluded. In fact vertical localization can be achieved even when one
ear is completely occluded. This evidence supports the idea that the spectral cues provided by the pinnae
work mainly monaurally.

There are many theories about the role of pinnae spectral cues. Very roughly, all of them suggest that
a major cue for elevation involves movement of spectral notches and/or peaks, that change as a function
of source and listener orientation. A way of appreciating the pinnae spectral cues is to examine the case
of sound sources along the yz plane of the listener: note that this is the locus of the points where not only
IID and ITD are null, but also spectral differences between the left and right HRTFs are null as long as
the left and right pinnae are identical. If we look back at Fig. 4.25(b), we can notice a moving spectral
notch that is thought to be important for elevation perception.

In general it is difficult without extensive psychoacoustic evaluation to ascertain how importantly
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these changes function as spatial cues. In particular, it is unclear if localization cues are derived from
a particular spectral feature such as a peak or a notch, or from the overall spectral shape. Also, it is
generally considered that a sound source has to contain substantial energy in the high-frequency range
for accurate judgment of elevation, because the pinna has limited dimensions in space and wavelengths
longer than the size of the pinna are not affected (see also Fig. 4.22(a)). One could roughly state that the
pinnae have a relatively little effect below 3 kHz.

While the role of the pinna in vertical localization has been extensively studied, the role of the torso
is less well understood. We have seen in Sec. 4.5.1 that the torso disturbs incident sound waves at
frequencies lower than those affected by the pinna. However, the effects of the torso are relatively weak,
and experiments to establish the perceptual importance of low-frequency cues have produced mixed
results.

4.5.2.4 Distance perception

It is an unanimous claim that auditory estimation of azimuth is more accurate that elevation estimation,
and that distance estimation is the most difficult task. Accordingly, the cues for azimuth are quite well
understood, those for elevation are less well understood, and those for distance are least well under-
stood. Distance perception involves a process of integrating multiple cues, any of which can be rendered
ineffective by the summed result of other potential cues.

In the absence of other information, intensity is the primary distance cue used by listeners, who learn
from experience to correlate the physical displacement of sound sources with corresponding increases or
reductions in intensity. Under anechoic conditions, sound intensity reduction with increasing distance is
predicted by the inverse square law: an omnidirectional sound source’s intensity will fall approximately
6 dB for each distance doubling (see also our discussion of the clarity index parameter in Sec. 4.2.2).
However this law is not well motivated perceptually: it expresses the ratio of a sound source’s intensity
to a reference level, whereas the perceived magnitude of intensity is called loudness. Thus a mapping
where the relative estimation of doubled distance follows “half-loudness” rather than “half-intensity”
seems preferable: the two scales are different.9

Loudness (or intensity) increments can only operate effectively as distance cues in the absence of
other information, in particular reverberation. When reverberation is present the overall loudness at a
listener’s ear does not change much for very close and very distant sources: the distance-dependent
scaling applies only to the direct sound whereas the reflected energy remains approximately constant.
The change in the proportion of reflected to direct energy, the so-called R/D ratio, seems to function as a
stronger cue for distance than intensity scaling. In particular a sensation of changing distance can occur
if the overall loudness remains constant but the R/D ratio is altered. Note however that in some cases the
possible R/D ratio variation can be limited by the size of the particular environmental context, causing
the cue to be less robust (e.g. in a small, acoustically treated room, the ratio would vary between smaller
limits than in a large room like a gymnasium).

Estimation of distance with anechoic stimuli is usually worse than in experiments with “optimal”
reverberation conditions. Many experimental results show an overall underestimation of the apparent
distance of a sound source in an anechoic environment, which may be explained by the absence of
reverberation. It can be said that reverberation provides the “spatiality” that allows listeners to move
from the domain of loudness inferences to the domain of distance inferences, i.e. from an analytic
listening attitude to an everyday listening attitude.

Distance perception is also affected by expectation or familiarity with the sound source. If the sound
is completely synthetic (e.g., pulsed white noise), then a listener will typically focus on parametric

9We will return on the concept of loudness in Chapter Auditory based processing.
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changes in loudness and R/D ratio (in this case loudness probably plays a more important role than
reverberation effects). On the other hand, if the sound source is cognitively associated with a typical
distance range, that range will be more easily perceived than unexpected or unfamiliar distances. This is
especially true for speech: as an example, it is easier to simulate a whispering voice 20 cm away from
your ear than it is to simulate an unnaturally loud whisper 10 m away.

Spectral effects can also affect distance perception, although to a lesser extent than the cues discussed
above. Atmospheric conditions and air absorption play a role: with increasing distance, higher frequen-
cies of a complex sound are increasingly attenuated by air humidity and temperature. There is little
experimental evidence this cue is actually used by listeners in forming the distance of an auditory event,
although some experimental results suggest that, in the absence of other cues, a low-frequency emphasis
applied to a stimulus would be interpreted as “more distant” compared to an untreated stimulus. A sec-
ond spectral effect is produced in the so-called near field, i.e. for distances less than approximately 1 m.
Within this range it is not possible to assume the sound wavefronts to be planar, and the effect of their
curvature must be taken into account. As the source approaches, emphasis is added to lower frequencies.
This phenomenon corresponds to the “darkening” of tone color that occurs as a sound source is moved
very close to one’s ear.

Note that all the cues discussed above are essentially monoural cues. An open question is whether
binaural listening improves the perception of distance. This could indeed be the case again in the near-
field limit. The spherical head model shows that in this limit both the ILD and the ITD at low frequencies
are emphasized, especially for very lateralized sound sources (θ ∼ ±π/2). This effect is sometimes
termed auditory parallax, and has been interpreted by some to mean that the accuracy of estimation of
a sound from the side should be improved when compared to distance perception on the median plane.
There are numerous discrepancies in the literature, however, and the question of the influence binaural
cues to distance perception is still unresolved.

4.5.2.5 Dynamic cues

So far we have examined sound source perception in the implicit assumption of static conditions, i.e.
with both listener and source not moving. However in everyday perception we use also dynamic cues
in addition to static ones to reinforce localization. These arise from active, sometimes unconscious,
motions of listeners, who change their position relative to the source. When we hear a sound that we
want to localize, we move e.g. in order to minimize the interaural differences, using our head as a sort of
“pointer”. Animals use movable pinnae for the same purpose (think of a cat).

When moving their head, listeners apparently integrate some combination of the changes in ITD,
ILD, and movement of spectral notches and peaks that occur with head movement over time, and sub-
sequently use this information to improve localization ability. Perhaps the most clear example is rep-
resented by front/back confusions, which are common in static listening tests (see our discussion about
cones of confusion), and instead disappear when listeners are allowed to turn their heads during a local-
ization task: a listener who is trying to localize a source at, e.g. θ = 30◦, ϕ = 0◦ will probably attempt
to center the auditory image by moving his head to the right. If the sound becomes increasingly centered
–i.e. interaural differences are minimized– consequently to head motion, then it must be in the front. If
instead it becomes increasingly lateralized –i.e., the sound becomes louder and arrives sooner at the right
ear relative to the left– then it must be to the rear.

Dynamic cues are important also for externalization. IHL, which can be experienced with headphone
reproduction as discussed previously, is less likely to occur when head movement is allowed, probably
for the same reason that front/back confusion is avoided: dynamic cues arising from head motion are
used to disambiguate locations, while static conditions can potentially lead to judgments at a “default”
position inside or at the edge of the head. A very undesirable situation is when the sound scene is pre-
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sented through headphones without traking of head/body motion, and the listener can move: in this case
dynamic cues are absent and the scene rotates together with the user, creating discomfort and preventing
externalization. When visual cues are supplied however, e.g. one can move in a fully immersive virtual
environment and can see the virtual sound source, it is quite likely that the combination of vestibular
and visual cues will enable externalization. In fact externalization can occur even when listening to a
television with a single earpiece: this is because vision is more reliable than audition in spatial location,
and therefore our brain “trusts” visual rather than auditory feedback (the general mechanism underlying
this phenomenon is known as “visual capture”).

Finally, active listener motion provides cues for distance perception. One is the motion-induced
rate of change in intensity the so-called acoustic τ ,10 by which a listener who moves e.g. towards the
sound can infer distance information. A one is the so-called motion parallax, which indicates the rate of
change in angular direction resulting from listener translation: for a very close source, a small shift of
the head causes a large change in angular direction, while for a very distant source the change is almost
null irrespective of the amount of shift. The rate of change of ITD, ILD, and spectral notches/peaks
will therefore be affected by the distance. This dynamic cue is in many respects similar to its visual
counterpart (a large, distant sphere and a small, near sphere look the same, but if we move the different
changes in perspective reveal the different distances).

4.6 Algorithms for 3-D sound rendering

Before examining processing algorithms for 3-D sound rendering we have to understand that the tech-
niques to be developed depend on the type of system that is going to be used: the type of the effectors (e.g
loudspeakers vs. headphones), as well as their number and geometric arrangement (e.g. stereo systems
vs. 5.1 surround systems, etc.).

Stereo is the simplest system involving “spatial” sound. In order to place a sound to the left or to the
right, its signal is sent to the corresponding loudspeaker. If the same signal if sent to both speakers, the
speakers are wired “in phase”, and the listener is approximately equidistant from the speakers, then the
listener will perceive a “phantom source” located midway between the two loudspeakers. By crossfading
the signal from one speaker to the other, one can create the impression of the source moving continuously
between the two louspeaker positions. With this technique however the perceived source will never move
outside the line segment between the two speakers.

Multichannel systems are the next step in complexity. The idea is to have a separate channel for every
desired direction, possibly including above and below. Commercial home-theater systems are based on
this idea. In typically reverberant environments, one can exploit the limitations of our perception (see
in Sec. 4.5.2 our discussion about azimuth perception in reverberant environments) and use small loud-
speakers everywhere, except for one large speaker (the “subwoofer”) that provides the nondirectional,
low-frequency content.

Headphone-based systems have some disadvantages compared to loudspeakers: headphones are in-
vasive and can be uncomfortable to wear for long periods of time; they have non-flat frequency responses
that can compromise spatialization effects; they tend to provide the impression of too close sources, and
do not compensate for listener motion unless a tracking system is used. On the other hand they have two
main advantages: first, they eliminate reverberation of the listening space; second, and more important,
they allow to deliver distinct signals to each ear, which greatly simplifies the design of 3-D sound ren-
dering techniques. On the contrary loudspeaker based systems suffer from “cross-talk”, i.e. the sound
emitted by one loudspeaker will be always heard by both ears. If one ignores the effects of the listening

10This name comes from studies in visual perception, where the optical τ specifies the time-to-contact estimated by a subject
in relative motion with respect to a target.
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Figure 4.28: Block scheme of a headphone 3-D audio rendering system based on HRTFs.

environment, headphone listening conditions can be roughly approximated from stereo loudspeakers us-
ing cross-talk cancellation techniques, which try to pre-process the stereo signals in such a way that the
sound emitted from one loudspeaker is cancelled at the opposite ear. Using these techniques the phan-
tom source can be placed significantly outside of the line segment between the two loudspeakers and in
particular elevation effects can be produced. The main problem is that the result will depend on where
the listener is relative to the speakers: cross-talk cancellation is obtained only near the so-called “sweet
spot”, a specific listener location assumed by the system.

In this section we will focus on techniques for headphone-based systems. We will implicitly assume
that a single (point) sound source is rendered in space: if multiple sound sources have to be rendered,
then each one has to be processed with a different replica of the rendering scheme, with consequent
increases in the computational costs.

4.6.1 HRTF-based rendering

The general idea in HRTF-based 3-D audio systems is to use measured HRIRs and HRTFs. Given an
anechoic signal and a desired virtual sound source position (θ, ϕ), a left and right signals are synthesized
by (1) delaying the anechoic signal by appropriate amount, in order to introduce the desired ITD, and
(2) convolving the anechoic signal with the corresponding left and right head-related impulse responses.
A synthetic block scheme is given in Fig. 4.28. In the remainder of this section we summarize the main
steps involved in the development of a HRTF-based 3-D audio system, including HRTF measurement
and processing, approximation through synthetic HRTFs, and interpolation.

4.6.1.1 Measuring HRTFs and ITDs

The typical setting for HRTF measurement is the following: an anechoic chamber, a set of speakers
mounted on a geodesic sphere (with a radius of at least one meter in order to avoid near-field effects),
at fixed intervals in azimuth and elevation. The listener is at the center of the sphere, with microphones
placed in each ear. HRIRs are measured by playing an analytic signal and recording the responses
produced at the ears, for each desired virtual position.11 Listener and speakers do not need to be moved,
facilitating the collection of measurements. Microphone placing is an issue: it can be placed at the
entrance of a plugged ear canal, or near the eardrum to account for the response of the ear canal.

Measured HRTFs can be analyzed in order to estimate ITD values and derive a table to be subse-
quently used in the rendering stage (see the first processing block in Fig. 4.28). ITD estimation can be
performed through various methods, including cross-correlation methods (where ITD is computed as the
offset in cross-correlation maxima of h(l) and h(r)), leading-edge methods (where the time difference

11There is a plethora of sophisticated techniques for Impulse Response estimation, which we do not discuss here.
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of the start of the impulses is estimated), and so on. Some approaches allow to derive a frequency-
dependent ITD, while in other cases frequency-independent estimates are derived. Alternatively, theo-
retical ITD models can also be used instead of empirically estimated values. We have already examined
a frequency-independent ITD model, given in Eq. (4.56). Other models exist, that introduce frequency
dependence or even elevation dependence of ITD.

In most 3-D sound applications one typically wants to use a single set of HRTFs for every user. One
approach might be to use the features of a person who has “desirable” HRTFs, based on some criteria.
A set of HRTFs from a good localizer could be used if the criterion were localization performance. An
alternative approach is to construct generalized HRTFs, that represent the common features of a number
of individuals. Binaural impulse responses from many individuals can be “spectrally averaged” in the
Fourier domain. However this can cause the resultant HRTF to have diminished spectral features with
respect to individual ones. In the extreme case, one person has a 20 dB notch at 8 kHz, and another has
a 20 dB peak – the average is no spectral feature at all.

Generalized HRTFs can also be obtained through the use of so-called “dummy heads”, which are
mannequins constructed from averaged anthropometric measures and represent standardized heads with
average pinnae and torso. The most widely used one is probably the KEMAR (Knowles Electronics
Manikin for Auditory Research), although many others are commercially available. Measurements with
dummy heads are easier, since they are often part of integrated measurement and analysis systems. The
low frequency response of the microphones built into the head will be better than that of probe mics, and
the results will be more replicable. Moreover, 3-D sound systems based on dummy head HRTFs will be
closely matched to recordings made by the same binaural head, allowing compatibility between the two
different types of processing. One dummy head might sound more natural to a particular set of users
than another, depending on the microphones, the technique used for simulating the ear canal, the head’s
dimensions, and so on. The head size (and correspondingly, its diffraction effects and overall ITD) is a
major component in the suitability of one dummy head versus another.

4.6.1.2 Post-processing of measured HRTFs

Measured HRTFs undergo a series of processing steps. A typical procedure is post-equalization of
HRTFs to eliminate potential spectral nonlinearities originated from the loudspeaker, the measuring mi-
crophone, and the headphones used for playback. As an example, probe microphones are usually small
and are especially inefficient at low (< 400 Hz) frequencies, making high-pass filtering or “bass boost-
ing” a fairly common HRTF post-equalization procedure. A frequency curve approximating the ear canal
filter, usually derived from some standard equalization, can be applied if it was not part of the impulse
response measurement. Since this filter is independent on the angle of incidence, it needs to be com-
pensated only once. For most applications, the listener’s own ear canal resonance will be present during
headphone listening; this requires removal of the ear canal resonance that may have been present in the
original measurement, to avoid a “double resonance”.

One more post-processing procedure is often applied to reduce redundancy in HRTF data. Spectral
features that are common to raw HRTFs at all locations do not contain important directional cues, and do
not need to be encoded in each single HRTF. Therefore a so-called Common Transfer Function (CTF)
is often estimated, by computing the mean log-magnitude of the HRTFs measured at several spatial
locations. The CTF will include the direction-independent spectral features shared by all HRTFs (e.g.,
the ear canal filter). It will also include systematic measurement artifacts, if any. During postprocessing,
the CTF can be removed from the raw HRTFs to yield the Directional Transfer Function (DTF). The
DTF is a function of θ, ϕ, and is the quantity that contains spectral cues responsible for spatial hearing.
Let C(ω) be the known CTF and D(l),(r)(θ, ϕ, ω) be the unknown left and right ear DTFs respectively.
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Then D(l),(r) are estimated from H(l),(r) and C with the equality

H(l),(r)(θ, ϕ, ω) = C(ω)D(l),(r)(θ, ϕ, ω). (4.59)

The CTF captures the overall structure and dynamic range of the HRTFs, allowing each DTF to operate
over a smaller dynamic range. This division allows us to vary a smaller parameter set (corresponding to
only the DTF) to achieve space-varying HRTF approximations. Many of the algorithms described in the
next sections can be applied either to the “raw” HRTFs or to the DTFs.

M-4.12
Write a script that computes the Common Transfer Function C(ω) and the Directional Transfer Functions
D(θk, ϕk, ω) given a set of HRTFs H(θk, ϕk, ω) measured on M directions θk, ϕk (k = 1 . . .M ).

A third post-processing procedure is minimum-phase reconstruction of the HRTF filters. Recall that
a minimum-phase reconstruction of a filter is a filter with the same magnitude response of the original
one, in which all zeros and poles are inside the unit circle. Minimum-phase filters have many benefits in
terms of realization, coefficient interpolation, and so on. Various studies show that this processing step
does not have any perceptual consequences, provided that ITD is introduced before convolution with the
minimum-phased reconstructed HRTF (as in Fig. 4.28), as detailed phase information is not perceptually
relevant.

Having acquired HRTF magnitude responses, one can design synthetic HRTFs, low-order filters that
approximate the original HRTFs in a perceptually motivated way while providing significant computa-
tional advantages. In fact direct use of measured HRTFs requires a convolution with long FIR filters:
assuming a duration of ∼ 10 ms for a measured HRIR (reported durations vary across studies), the
corresponding HRIR filter length is ∼ 440 samples for Fs = 44.1 kHz. Despite the ever increasing com-
putational power at our disposal, such filter sizes can make it difficult to synthesize complex acoustic
environments in real time, particularly when multiple sound sources and reverberant environments have
to be rendered.

Developing perceptually appropriate low-order representations of the HRTFs may also provide in-
sight into sound localization mechanisms and into the usefulness of various cues embodied in the HRTF,
which is incompletely understood. Moreover, such representations can be used to improve our under-
standing of the physical mechanisms that produce certain features in the HRTF.

We can schematically synthetic HRTF design techniques into two families. In pole-zero models the
problem is viewed as one of filter design, which has several classical solutions. One drawback is that
the coefficients are usually complicated functions of azimuth and elevation, and have to be tabulated,
which hinders the usefulness of the model. Series expansions let one represent the HRTF as a weighted
sum of simpler basis functions. While this is useful for inspecting the data, the run-time complexity of
such models can limit their usefulness. In both cases, the original HRTFs can be further processed prior
to the design of the synthetic HRTFs. Usually some form of auditory smoothing is used, that performs
a non-uniform frequency-dependent smoothing of the responses based on psychoacoustic models. This
produces more regular magnitude responses without any relevant perceptual consequences, and filter
approximation is easier. We pospone the description of auditory smoothing techniques to Chapter Auditory

based processing. In the next sections we discuss both pole-zero and series expansion approaches to synthetic
HRTFs.
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4.6.1.3 Synthetic HRTFs: pole-zero models

Given a direction (θ, ϕ), a pole-zero model (or an ARMA model)12 approximates the corresponding
HRTF, H(z), with the rational transfer function

H̃(z) =
b0 +

∑q
k=1 bkz

−k

1−
∑p

k=1 akz
−k

=
B(z)

A(z)
. (4.60)

For brevity, here and in the following we omit in the notation any dependence on (θ, ϕ): in particular the
coefficient vectors b = {bk},a = {ak} will depend on θ, ϕ.

In the particular case p = 0, Eq. (4.60) is an all-zero (FIR) model: in this case the most straightfor-
ward approximation consists in windowing the impulse response h to a shorter length. This approach
can be since further refined to account for frequency-domain weighting that models the non-uniform fre-
quency resolution of the ear.13 Various studies report of synthetic all-zero HRTF models obtained with
this approach, with filter orders between 20 and 64.

In the particular case q = 0, Eq. (4.60) is an all-pole model: we have already seen in Chapter Sound

modeling: signal based approaches that linear prediction can be used in this case to estimate the coefficients {ak}
that allow H̃ to best approximate H .

In the general case q, p ≥ 1, traditional digital filter design techniques still state the problem as one of
minimizing the difference between H̃ and the target response H , which is typically known on a set of L
“design frequencies” {ωk}Lk=1 (e.g. ωk = 2kπ/LFs if the ωk are evenly distributed along the frequency
axis). Usually this difference is expressed as a weighted error function E given by

E(ωd) =W
(
ejωd

) [
H
(
ejωd

)
− H̃

(
ejωd

)]
, (4.61)

where W is some positive weighing function specified in the design. Moreover the error is usually
estimated with regard to the magnitude response while the phase response is disregarded since, as already
mentioned, the effect of the ITD is rendered separately and minimum phase transfer functions are used
(see Fig. 4.28). Commonly used error functions are based on the Lp norm of the function E . The
most straightforward choice is the L2 norm, which is generally known as the Least-Squares Error and
corresponds to the energy of the difference signal:

ELS{E} =
1

2π

∫ π

−π
| E(ωd) |2 dωd ∼ 1

L

L∑
k=1

[E(ωk)]
2 . (4.62)

Minimizing the errorELS{E} means finding the coefficient vectors b,a for which the gradient ofELS{E}
is null, that is solving the set of equations

∇aELS{E} = ∇bELS{E} = 0, (4.63)

where the notation ∇xELS stands for the gradient of ELS with respect to the vector x. One of the main
advantages of the least squares formulation is that the error function has a global minimum, since it is
quadratic. We do not enter into the mathematics involved in writing and solving these equations and
refer the reader to the literature on linear Least-Squares Error estimation.

M-4.13
Write a function that computes a LS pole-zero approximation of a target impulse response (representing e.g. a
HRIR), given the orders p and q.

12See linear prediction in Chapter Sound modeling: signal based approaches.
13See Chapter Auditory based processing
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Figure 4.29: Example of principal component analysis: a two-dimensional data set with 0 mean, and
the two basis vectors (principal axes) extracted using PCA.

Another choice is to minimize the L∞ norm of the difference function:

E∞{E} = max
−π<ωd<+π

| E(ωd) | . (4.64)

This is often referred to as Chebyshev or minimax criterion. Since this norm tries to minimize the
maximum error, it should be able to provide good approximation of peaks and valleys of the HRTFs,
which are relevant for localization as we know. On the other hand one drawback is that this error surface
may not always be convex and thus may lead to unstable or locally optimal results.

As already mentioned for the all-zero case, for our particular filter design problem it is desirable to
account for frequency-domain weighing that models the non-uniform frequency resolution of the ear. In
this sense, error metrics that utilize absolute LS error on a linear scale are not the best choice, whereas
an error criteria based on the difference in log magnitude might be perceptually more appropriate. Since
both spectral peaks and spectral notches provide relevant information about the sound source location,
minimizing the error on a log scale ensures that the solution is not biased toward peaks relative to notches.
An example of such a perceptually motivated error criterion is

Elog{H, H̃} =
1

L

L∑
k=1

(
ln |H(ωk) | − ln

∣∣∣ H̃(ωk)
∣∣∣)2 , (4.65)

A drawback of this kind of error functions is their minimization is a nonlinear problem, whose solution
can be found only with iterative numerical solvers. Another way to construct a perceptually motivated
error criterion is to choose the weighing function W in order to model auditory frequency resolution.

4.6.1.4 Synthetic HRTFs: series expansions

Based on the notions given in Sec. 4.5.1, one can argue on a physical basis that HRTFs should be com-
pletely determined by a relatively small number of physical parameters: average head radius, maximum
pinna diameter, etc. This suggests that the intrinsic dimensionality of the HRTFs might be small, and
that their complexity primarily reflects the fact that we are not viewing them correctly.

Among the statistical procedures used to provide a “simpler” representation of a set of correlated
measures, a powerful and popular one is principal component analysis (PCA), also known as Karhunen-
Loève transformation. The central idea of PCA is to reduce the dimensionality of a large dataset while
retaining as much as possible of the variation present in the data. A small set of basis vectors is derived,
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and these are used to compute the principal components, i.e. the sets of weights that reflect the relative
contributions of each basis vector to the original data.

To start, assume we wish to representM N -dimensional column vectors x1 . . .xM with a 1-dimensional
projection (a line) through their mean. The vector will then be represented as

xk ∼ m+ ake k = 1, . . .M, (4.66)

where e is a unit vector in the direction of the line, and ak is a constant coefficient that estimates the
distance of xk from the sample mean m = 1/M

∑M
k=1 xk. The optimal coefficient ak can be obtained

by minimizing the “squared error criterion function”

E(a1 . . . , ak, e) =
M∑
k=1

∥ (m− ake)− xk ∥2 . (4.67)

For a given direction e, the optimal coefficients are clearly ak = eT (xk −m), i.e. they are obtained by
projecting the data vectors onto the line e that passes through the sample mean. The question is now:
what is the optimal direction e? By exploiting the expression written above for the optimal ak’s, the
error E can be rewritten after some straightforward algebra as

E(a1 . . . , ak, e) =

M∑
k=1

∥ (m− ake)− xk ∥2 = . . . = −eTSe+

M∑
k=1

∥xk −m ∥2 , (4.68)

where S =
∑M

k=1(xk − m)(xk − m)T is the N × N scattering matrix of the data (which coincides
with the covariance matrix except for a multiplying factor 1/(N − 1)). Therefore minimizing E means
maximizing the function f(e) = eTSe, with the constraint ∥ e ∥ = 1. This can be done using Lagrange
multipliers.14 For our PCA problem we have L(e, λ) = eTSe− λ(1− eTe), and ∇eL(e, λ) = 2Se−
2λe. In conclusion the points e that maximize f(e) are those for which

Se = λe, (4.69)

i.e. are the eigenvectors of S for the eigenvalue λ. The single “best” line that represents the data is found
by picking the eigenvector corresponding to the largest eigenvalue of S so to ensure that eTSe = λ is
maximized. This can be readily extended to larger dimensions. If we wish to represent the xk’s on a
q-dimensional hyperplane through the sample mean, written as

xk ∼ m+

q∑
i=1

ak,iei, (4.70)

then we project the data onto the q eigenvectors of S corresponding to the q largest eigenvalues. If
we choose to use all eigenvectors, that is q = M in Eq. (4.70), we will get the original data back
(with no dimensionality reduction). From a geometrical standpoint, eigenvectors of S represent the
principal axes along which the data exhibit largest variance. The weight coefficients ak,i are called the
principal components. Moreover the basis vectors are derived in such a way that the first one captures
the majority of common variation present in the data and that the remaining vectors reflect decreasing
common variation and increasing unique variation. The number q of principal axes required to provide
an adequate representation of the data is largely a function of the amount of redundancy or correlation
present in the data. The greater the redundancy, the smaller the number q needed.

14Recall that in order to find the extremum of a function f(x) subject to a constraint g(x) = 0, one can construct the
Lagrange function L(x, λ) = f(x) + λg(x) and look for a zero of the gradient ∇xL(x, λ).
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Now suppose we have measured directional transfer functions D(θk, ϕk, ωj), on M directions θk, ϕk
(k = 1 . . .M ) and on N frequency points ωj (j = 1 . . . N ). We can apply PCA to the particular set
of M N -dimensional vectors xk constructed as xk,j = log |D(θk, ϕk, ωj) |, i.e. we work on the log
magnitudes of the DTFs (as already remarked, approximation of log-magnitudes is perceptually more
appropriate than approximation of linear magnitudes). The result is a set of q basis vectors ei (where
ei,j = ei(ωj)), such that for the kth direction (θk, ϕk) the DTF can be approximated as

log |D(θk, ϕk, ωj) | ∼
q∑

i=1

ai(θk, ϕk)ei(ωj). (4.71)

Studies on the evaluation of this procedure have shown that the first five basis functions (q = 5) can
accurately represent the magnitudes of the DTF set, and listening tests have shown a high correlation
between responses to the synthesized and measured conditions. Moreover the dependence on space and
frequency have been decoupled in Eq. (4.71), with consequent computational advantages.

M-4.14
Write a function that computes the first q principal axes ei (i = 1 . . . q) and components ai,k for a set of DTFs
D(θk, ϕk, ωj) measured on M directions θk, ϕk (k = 1 . . .M ) and on N frequency points ωj (j = 1 . . . N ).

4.6.1.5 Interpolation

HRTF measurements can only be made a finite set of locations, and when a sound source at an interme-
diate location must be rendered, the HRTF must be interpolated. If interpolation is not applied (e.g.. if
a nearest neighbor approach is used) audible artifacts like clicks and noise are generated in the sound
spectrum when the source position changes.

A straightforward way to perform interpolation directly on the HRIR samples is the bilinear method,
which simply consists of computing the response at a given point (θ, ϕ) as a weighted mean of the
measured responses associated with the four nearest points. More precisely, if the corresponding set of
HRIRs has been measured over a spherical grid with steps θgrid and ϕgrid, the estimate ĥ of the HRIR at
an arbitrary point (θ, ϕ) can be obtained as (see Fig. 4.30(a))

ĥ[n] = (1− cθ)(1− cϕ)h1[n] + cθ(1− cϕ)h2[n] + cθcϕh3[n] + (1− cθ)cϕh4[n], (4.72)

where hk[n] (k = 1, . . . , 4) are the HRIRs associated with the four nearest points to the desired position.
The parameters cθ and cϕ are computed as

cθ =
θ mod θgrid

θgrid
, cϕ =

ϕ mod ϕgrid

ϕgrid
. (4.73)

Several refinements can be applied to this simple technique, in order to improve efficiency. In particular,
reduced-order HRIR such as those described earlier in this section can be used. Also, interpolation can be
performed using only three grid points (those which form a triangle around the desired position). How-
ever, since some HRTF features arise due to coherent addition or cancelation of reflected and diffracted
waves, interpolation may not preserve these features and produce perceptually poor results. Moreover,
the interpolating filters are required to be minimum-phase: if this requirement is not satisfied, severe
comb-filtering effects in the frequency domain can be produced when the phase delays of the interpolat-
ing filters vary considerably. Also, to capture fine details of the HRTF the sampling must be fine enough,
i.e. satisfy a spatial Nyquist criterion. Interpolation can be performed in the frequency domain as well
(i.e. estimate the DFT of ĥ by interpolating the DFTs of the hk’s). Besides linear approaches, geometric
and spline interpolation can be used as well.
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Figure 4.30: Approaches to HRTF interpolation; (a) bilinear interpolation of the HRIRs, and (b) inter-
polation of zeros for pole-zero synthetic HRTFs

M-4.15
Realize bilinear interpolation.

If synthetic HRTFs in the form of pole-zero filters are being used, interpolation can be performed on
the poles and the zeros themselves. The case of an all-zero filter is relatively straightforward. Suppose
that we want to interpolate between two transfer functions Hk(z) (k = 1, 2) of the form

Hk(z) = 1 +

q∑
m=1

bk,mz
−m =

q∏
k=0

(1− ck,mz
−1), k = 1, 2, (4.74)

where bk,0 = 1 without loss of generality, and where we are assuming that the zeros of both filters
are sorted according to their phases. Then an interpolated filter Ĥ(z) =

∏q
m=0(1 − ĉmz

−1) can be
obtained by (1) pairing the zeros according to angular proximity, and (2) computing the interpolated
zeros ĉm = (1−ρ)c1,m+ρc2,m (m = 1, . . . , q ). Note that if theHk are minimum-phase the interpolated
filter is also minimum-phase (see also Fig. 4.30(b))

If we use pole-zero synthetic HRTFs of the form (4.60) with p > 0, then interpolation becomes more
complicated. One can still use convex combinations of pole and zero values from neighbouring DTF
approximations (note in particular that linear combination of stable poles is guaranteed to be stable).
However a naive realization of this approach can result in erratic and occasionally large errors of the
interpolated filters. In order to achieve regularity in the interpolation, more refined algorithms are needed
that provide pairing and ordering on the entire HRTF database.

Synthetic HRTFs based on PCA expansions, in the form (4.71) are well suited for interpolation,
since the dependence on frequency is decoupled from the dependence on spatial variables: therefore
only the spatially-dependent coefficients ai(θ, ϕ) need to be interpolated while the frequency-dependent
basis-vectors are not involved in the interpolation process. Functional representations of the ai’s can be
obtained through standard techniques such as spline interpolation.

In general, reconstruction of the underlying continuous coefficient functions from the samples ob-
tained is an inherently ill-posed problem, because the samples do not uniquely define the functions in the
absence of additional assumptions, and because the samples can be corrupted by the presence of noise.
Some form of smoothness constraints must be used, so that a small change in θ, ϕ induces a small change
in the coefficients.
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Figure 4.31: Block scheme of a headphone 3-D audio rendering system based on a structural model.

4.6.2 Structural models

As opposed to the HRTF-based rendering approach discussed above, the structural approach presented in
this section is based on the modeling of the separate effects of the torso, head, and pinna, which combine
to form the head related transfer function.

The HRTF is then modeled as a combination of filter blocks, each accounting for the contribution
of one anatomical structure. The parameters of each block can in principle be related to anthropometric
measures (e.g. the interaural distance, or the diameter of the cavum conchae), with the advantage that
a generic structural HRTF model can be adapted to a specific listener and can account for posture-
related effects. Another advantage is that room effects can be incorporated into the rendering scheme,
specifically early reflections can be processed through the pinna model.

It is clear that separating the effects of various anatomical structures into perfectly independent filter
structures is a heuristic approximation that disregards interactions due to waves scattered from one struc-
ture to another. However research in this direction has shown that structural models are able to provide
good approximations of real HRTFs.

A synthetic block scheme of a generic structural model is given in Fig. 4.31. In the remainder of this
section we describe modeling approaches for each of the three main components depicted in the figure,
namely head, torso, and pinna. Room effects can be also accounted for in this structure: in particular
early reflections can be convolved with a pinna model, depending on their incoming direction (see also
our discussion on directional effects with early reflection modeling in Sec. 4.3.2).

4.6.2.1 Head models

In Sec. 4.5.1 we have analyzed the effects of the head on the sound field at the eardrum by approximating
the head with a sphere. We have seen that given a sphere of radius a, a point sound source at a distance
r > a from the center of the sphere, and a point on the sphere, then the diffraction of an acoustic wave
by the sphere seen on the chosen point can expressed with a transfer function Hsphere(ρ, θinc, µ) (where
we are using the normalized frequency µ = ωa/c and the normalized distance ρ = r/a, and θinc is the
angle of incidence). We have also studied this tranfer function in the limit of ρ→ +∞.

In this limit the responseHsphere can be approximated with a parametric filter H̃sphere(θinc, µ), whose
parameters depend on θinc only. In fact already a first order filter can provide reasonable results, if
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Figure 4.32: Spherical head model; (a) ideal response of Eq. (4.57) for ρ → +∞, (b) approximated
response with the first-order filter of Eq. (4.75) with αmin = 0.1 and θmin = 170◦.

properly parametrized. Some authors have proposed the following form:

H̃sphere(θinc, µ) =
1 + j

2µ · α(θinc)
1 + j

2µ
, 0 ≤ α(θinc) ≤ 2. (4.75)

The idea behind this equation is that the θinc-dependent parameter α controls the location of the zero
in the numerator: for α = 2 the filter gives a 6 dB boost at high frequencies (which corresponds to the
behavior of Hsphere for θinc = 0), while for α < 1 there is a low pass effect. Moreover, in order for
H̃sphere to match the behavior of Hsphere at values θinc ̸= 0, the parameter α must depend in a nonlinear
way on θinc. A possible choice is

α(θinc) =
(
1 +

αmin

2

)
+
(
1− αmin

2

)
cos

(
θinc
θmin

)
(4.76)

where values of the auxiliary parameters αmin, θmin can be chosen in order to tune the dependence of
α on θinc. The result can be seen in Fig. 4.32.

The filter H̃sphere can already produce fairly convincing azimuth effects, even though it only matches
the gross magnitude characteristics of the spectrum. In order to enhance its effectiveness, an all-pass
section has to be cascaded to it, to account for the interaural time difference: we can implement this addi-
tional block as a fractional delay filter15 FITD(θinc, z), so that the complete head models is H̃sphere(θinc, z)·
FITD(θinc, z). The ITD values used to parametrize the filter FITD can be values derived from measured
HRTFs, or values derived from theoretical ITD models. We have already discussed this point at the
beginning of Sec. 4.6.1.

M-4.16
Write a function that relizes the first-order filter (4.75).

It is clear that a sphere provides only a first approximation to a human head. Better approximation
can be already obtained by introducing two simple refinements. First, one can use a non-spherical shape:

15Recall that we have discussed fractional delay filters in Chapter Sound modeling: source based approaches.
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Figure 4.33: A schematic representation of the major features of the HRIR in the median plane (θ = 0)
for a human subject. White and black lines indicate ridges and throughs in the response, respectively.

an ellipsoid is an obvious choice. Second, one can note that the ears are not positioned across a diameter,
but are displaced behind and below the center of the head. As already remarked in Sec. 4.5.2, these two
anatomical details have the consequence that the ITD is a function of elevation as well as azimuth. In
fact analysis on measured HRTFs shows that for a fixed value of θ and varying values of ϕ,16 the ITD
can vary by almost 20% of its maximum value, with noticeable perceptual effects.

4.6.2.2 Modeling torso and pinna reflections

Based on what we have said in the previous sections, we can assume that the main effects of torso and
pinna that need to be accounted for are reflections. This means that both torso and pinna will be modeled
as FIR comb filters, in which each reflection determines a comb series in the spectrum. We should be
aware however that reflection is a short-wavelength or high-frequency concept, and modeling the effects
of torso and pinna by specular reflections is only a first approximation.

In order to realize a model for the torso and the pinna, everything reduces down to estimating re-
flection delays and their dependence on θ and ϕ, either through analysis of measured HRIRs/HRTFs,
or through numerical simulations. As remarked by many authors, a general trend can be observed in
measured HRTFs. A schematic representation is given in Fig. 4.33, where only elevations in the range
[−π/4, π/2] have been considered: for values ϕ < −π/4 head shadowing effects start to appear, while
HRIR features (end especially pinna related features) are less clear for ϕ > π/2.

The initial ridge due to the direct impulse is followed by a sequence of ridges and troughs. A second
ridge occurs roughly 50µs after the initial ridge and varies only slightly with elevation. It is followed by
a very prominent trough and ridge pair whose latency varies nearly monotonically with elevation from
about 400µs at ϕ = −π/4 to 100µs at ϕ = π/2. The sharply positive sloping diagonal events are due
to a torso reflection and its replication by pinna effects. The delay between the direct and the reflected
sound from the torso is maximum above the head and decreases with elevation, as one would expect
from geometrical considerations.

Note that the scheme depicted in Fig 4.33 corresponds to HRIRs measured in the median plane
(θ = 0). Torso echoes vary significantly with azimuth also. On the contrary, pinna events exhibit very
limited azimuth dependence.

The main torso reflection is relatively straightforward to estimate, either from measured HRIRs,
or from numerical simulations of simplified models where both head and torso are approximated as

16We are using the interaural polar coordinate system here.
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Figure 4.34: A simple yet complete structural model.

ellipsoids (so-called “snowman” models). With these methods one can estimate the θ- and ϕ-dependent
delay τ (t)(θ, ϕ) of the main torso reflection. In conclusion, torso effects can be modeled with a single
fractional delay filter g(t)Fτ (t)(θ, ϕ, z), where g(t) is the torso reflection coefficient. Note that this model
is only valid for positive ϕ values: as the source descends in elevation, a point of grazing incidence is
reached, below which torso reflections disappear and torso shadowing emerges.

Pinna effects are harder to model, since it is more difficult to automatically extract filter parameters
from measured data. Time-domain analysis (i.e., identification of reflections in the HRIR) is in this
case not reliable. Frequency-domain analysis is preferable, and consists in identifying notch series in
the HRTF. If such series can be identified, they can then be related to ear anatomy. More precisely,
the delay τ (p)i (ϕ) of the ith pinna reflection causes periodic notches in the spectrum,17 with frequencies
ω
(p)
i,n (ϕ) = 2π(2n + 1)/τ

(p)
i (ϕ) (with n ≥ 0). Moreover, τ (p)i (ϕ) = 2d

(p)
i (ϕ)/c, where d(ϕ) is the

distance between the ith reflecting surface of the pinna (e.g. the cavum conchae) and the ear canal. The
frequency ω(p)

i,0 (ϕ) of the first notch and d(p)i (ϕ) are then related through the equation

ω
(p)
i,0 (ϕ) = πc/2d

(p)
i (ϕ). (4.77)

Therefore, given an estimate of the function ω
(p)
i,0 (ϕ) obtained from analysis of HRTFs, the function

d
(p)
i (ϕ) can be estimated through this equation and consequently the measured notches can be be related

to anatomical details of the pinna. In conclusion, pinna effects can be modeled with a set of n fractional
delay filters g(p)i F

τ
(p)
i

(ϕ, z).

4.6.2.3 A complete structural model

The components that we have analyzed in the previous sections can be combined to form the simple
yet complete structural model depicted in Fig. 4.34, which explodes the general block scheme presented

17See comb filters in Sound modeling: source based approaches.
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in Fig. 4.31. The rationale for this structure is that sound can reach the ear pinna via two major paths:
diffraction around the head, and reflection from the torso. In both cases, the sound waves that reach the
pinna are altered by pinna reflections before entering the ear canal.

M-4.17
Realize the structural model of Fig. 4.34.

This model can be refined in many respects. The first-order head-shadow filter H̃sphere can be replaced
by more accurate filters. In particular, H̃sphere is derived in the far-field limit: in order to model near-field
effects we should substitute it with a filter that approximates Eq. (4.57) directly, and takes into account
dependence on range.

Some parameters can be made direction-dependent: in particular, careful examination of torso echo
patterns reveals that torso reflection coefficients g(t) vary with elevation. Finally, note that in this model
sound diffracted from the head and sound reflected from the torso are processed through the same pinna
models: this is not entirely correct since the torso echoes arrive at the ear from a different direction than
the direct sound, and therefore they should really pass through a different pinna model. On the other
hand the actual perceptual relevance of torso reflections is not clear, as already mentioned in Sec. 4.5.2,
therefore this approximate description can be considered to be acceptable.

4.7 Commented bibliography

Wallace C. Sabine has in a way invented the science of concert hall acoustics in the early ’900s. For a
review of his work and early literature on concert hall acoustics see [Sabine, 1939] (note that the Paul E.
Sabine author of this paper is the cousin of Wallace). A very complete discussion of physical aspects of
room acoustics is provided by Kuttruff [1991]: Section 4.2.1 is almost entirely based on this book. We
have not discussed techniques for impulse response (and particularly RIR) measurement, for a review
see e.g. [Stan et al., 2002]. Farina and coworkers have worked extensively on RIR measurements but
also on the simulation of the acoustics of closed spaces; the RIR plotted in Fig. 4.3 is one of the publicly
available RIRs on the group webpage.18

Concerning the research on perceptual attributes of reverberation, the tutorial paper by Beranek
[1992] summarizes the main results obtained up to 1992. Research at IRCAM tried to provide a mini-
mal set of independent parameters that give an exhaustive characterization of room acoustic quality [Jot,
1999]. These parameters are divided into three categories, that relate to room perception, source/room
interaction, and source perception, respectively.

The first artificial reverberators were electromechanical devices such as plate reverberators and
spring reverberators, in which mechanical elements like plates and springs were fed with a dry sound
signal, and an output signal was read at a different point of the element. Despite their limited ability in
simulating real environments, plate and spring reverbs have become through the years some of the most
sought after effects in digital audio [Bilbao and Parker, 2010].

The first artificial reverberator based on filters was proposed by Manfred Schroeder in the early ’60’s.
The reverberator realized in our example M-4.3 is in fact the Schroeder [1962] reverberator. Schroeder
also provided a method for measuring the reverberation time [Schroeder, 1965], which can be used to
realize the code in example M-4.1. Moreover, Schroeder [1970] proposed the combination of early
reflections and late reverberation depicted in our Fig. 4.12(a).

An extensive experimentation on structures for artificial reverberation was conducted by Andy Moorer
in the late ’70’s. He extended the Schroeder’s work in relating some basic computational structures (e.g.,

18See http://pcfarina.eng.unipr.it/.
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tapped delay lines, comb and allpass filters) with the physical behavior of actual rooms. The rever-
berator realized in our example M-4.4 is in fact the Moorer [1979] reverberator. He also proposed the
combination of early reflections and late reverberation depicted in our Fig. 4.12(b).

Gardner [1998] has explored the use of structures based on all-pass and nested all-pass filters (see in
particular Figs. 4.10 and 4.11). This reference, together with [Rocchesso, 2002], also provides an general
extensive overview of reverberation algorithms, including binaural reverberation. Research on binaural
reverberation techniques includes work by [Begault, 1994, Chapter 4] and by Griesinger [1997]. Our
Fig. 4.13(b) is based on this latter reference.

Feedback Delay Networks were first suggested for artificial reverberation by Gerzon [1971, 1972],
who noted that several comb filters could “sound good” when cross-coupled. He proposed an orthogonal
matrix feedback around a parallel bank of delay lines, as a means of maximizing cross-coupling. Some
years later Stautner and Puckette [1982] independently suggested similar ideas and proposed a four-
channel FDN reverberator based on the feedback matrix given in our Eq. (4.38). Jot [Jot and Chaigne,
1991, Jot, 1991, 1997] developed a systematic FDN design methodology allowing largely independent
setting of reverberation time in different frequency bands. Rocchesso and Smith [1997] have provided
further insights about the structures of feedback matrices in FDNs, and discussed analogies between
FDNs and DWNs. General discussions of the use of FDNs for artificial reverberation are provided by
Gardner [1998], Rocchesso [2002], Smith [2008]

Waveguide meshes were first studied by Van Duyne and Smith [1993, 1995]. Since then many
studies have focused on techniques for reducing dispersion errors. Savioja and Välimäki [2000, 2003]
have proposed interpolation and frequency-warping techniques to reduce dispersion as function of both
frequency and propagation direction. Fontana and Rocchesso [1998, 2001] have focused on 2-D meshes,
and provided results both about applications to membrane modeling and about general numerical aspects:
they compared square, triangular, and hexagonal meshes in terms of sampling efficiency and dispersion
error. Bilbao [2004] has also investigated in details many numerical and computational properties of the
waveguide mesh, in particular he analyzed dispersion properties of various mesh topologies using von
Neumann analysis and he provided a unified view of the digital waveguide mesh and wave digital filters
as particular classes of energy invariant finite difference schemes. Finally, another topic addressed in the
literature is the design of mesh boundaries, with a special focus on modeling diffusion. This problem
was addressed by Laird et al. [1999], and later by Lee and Smith [2004], who used quadratic residue
sequences to design maximally diffusing boundaries.

Three general and valuable books on spatial hearing are [Blauert, 1996], which is the traditional
reference on the psychophysics of three-dimensional hearing, [Carlile, 1996], which not surveys the
physics and psychophysics of 3-D auditory perception and also addresses the synthesis of spatial sound,
and [Begault, 1994], which is focused on 3-D sound rendering techniques and applications to virtual
reality and multimedia.

One of the pioneers in spatial hearing research was John Strutt, better known as Lord Rayleigh. He
first described quantitatively the shadow effects of a sphere in [Strutt, 1904], and subsequently presented
in [Strutt, 1907] the Duplex Theory that we have described in Sec. 4.5.2. The acoustic effects of the
pinna have been studied in later years. Edgar A. G. Shaw and coworkers developed mechanical models
of the external ear and measured their acoustic properties in several works (see e.g. [Teranishi and
Shaw, 1968]). In the same years Dwight W. Batteau studied the role of the pinna in sound localization
[Batteau, 1967]. More recently pinna effects have been studied through computational models, e.g. by
Katz [2001].

As already mentioned, auditory cues for distance perception are still not completely understood. A
recent review on the subject is provided by Zahorik et al. [2005]. The perceptual relevance of intensity
scaling with distance han been known for a long time (see [Coleman, 1963]). Begault [1991] has shown
that the preferred scaling of intensity with distance depends on the stimulus type. The R/D ratio have been
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cited in many studies as a relevant cue to distance since Rabinovich [1936]. Other relevant studies about
the role of reverberation, familiarity, and expectation in distance perception include those by Mershon
and Bowers [1979] and by Gardner [1969]. Butler et al. [1980] have studied distance-dependent spectral
effects due to air absorption. Sound source localization in the near-field is another open research topic.
Recent studies include the work by Shinn-Cunningham et al. [2000] and by Brungart [2002].

Studies on the importance of dynamic cues for sound localization date back to Wallach [1940].
Since then many studies have shown that active motion helps especially in azimuth estimation and to a
lesser extent in elevation estimation [Thurlow and Runge, 1967, Perrett and Noble, 1997]. Wightman
and Kistler [1999] have provided evidence of the disappearing of front-back reversal when listeners are
allowed to turn their heads during the localization task. Loomis et al. [1998] have studied the role of
dynamic cues, specifically motion parallax and acoustic tau, on the perception of distance.

A tutorial of HRTF-based rendering techniques is [Cheng and Wakefield, 2001], while a review
paper more focused on the evaluation of 3-D sound systems is [Martens, 2003]. Huopaniemi [1999] also
provides an extensive overview, especially on synthetic HRTFs and pole-zero models. The first attempt to
develop a pole-zero HRTF model is reportedly Asano et al. [1990]. Other relevant contributions include
work by Wakefield and coworkers (see e.g. [Durant and Wakefield, 2002]), and by Kulkarni and Colburn
[2004]. The Interface Lab. at UC Davis has created a public-domain database of high-spatial-resolution
HRTF measurements for 45 different subjects, including the KEMAR mannequin with both small and
large pinnae. The database is described in Algazi et al. [2001]. The HRTFs plotted in our Fig. 4.25 have
been taken from this database.

The first attempt to apply PCA techniques to series expansions of HRTFs appears to be [Martens,
1987]. Other relevant contributions include in particular work by Kistler and Wightman [1992]. Mid-
dlebrooks and Green [1992] have studied the relation between basis vectors obtained from PCA and
anthropometric data. PCA is the oldest technique in multivariate analysis. It was originally developed
by Pearson [1901] and further generalized by other authors. A general introduction to PCA can be found
e.g. in [Duda et al., 2000].

Concerning HRTF interpolation: direct bilinear interpolation on FIR coefficients is described by
Huopaniemi [1999]. Other recent contribution include [Zotkin et al., 2004], where an interpolation
method that uses only three grid points is proposed, and [Freeland et al., 2004], where an interpola-
tion procedure similar to the bilinear method, but based on auxiliary “interpositional transfer functions”
(IPTFs), is proposed. Interpolation of pole-zero HRTF models is addressed e.g. by Hacıhabiboğlu et al.
[2005] and by Larcher [2001] Interpolation of HRTF models based on PCA expansions has been inves-
tigated by Chen et al. [1995].

The origin of research on structural HRTF models is probably to be found in the work of Genuit
[1984]. Even though it was based on very crude approximations of human geometries, the model incor-
porated static features of the HRTF (ear-canal resonance and eardrum impedance), as well as azimuth-
dependent (ITD, IID) and elevation-dependent (pinna and torso reflections) features. The Interface Lab.
at UC Davis has been working on the topic since the early ’90’s and has produced a number of relevant
research papers. Much of our Sec. 4.6.2 is based on their work. For a start, see [Brown and Duda, 1998].
An interesting work that relates resonant properties of the pinna to anthropometry is [Raykar et al., 2005].
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